
Chaos, Solitons and Fractals 107 (2018) 26–38 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Directed clustering in weighted networks: A new perspective 

G.P. Clemente 

a , R. Grassi b , ∗

a Department of Mathematics, Finance and Econometrics, Catholic University of Milan, Italy 
b Department of Statistics and Quantitative Methods, University of Milano–Bicocca, Italy 

a r t i c l e i n f o 

Article history: 

Received 28 September 2017 

Revised 4 December 2017 

Accepted 11 December 2017 

Keywords: 

Complex networks 

Clustering coefficient 

Weighted networks 

Directed graphs 

a b s t r a c t 

Several definitions of clustering coefficient for weighted networks have been proposed in literature, but 

less attention has been paid to both weighted and directed networks. We provide a new local clustering 

coefficient for this kind of networks, starting from those already existing in the literature for the weighted 

and undirected case. Furthermore, we extract from our coefficient four specific components, in order to 

separately consider different link patterns of triangles. Empirical applications on several real networks 

from different frameworks and with different order are provided. The performance of our coefficient is 

also compared with that of existing coefficients. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Literature in network theory mainly focused on unweighted 

undirected networks and several topological properties of net- 

works have been identified through useful indicators, which en- 

hance the efficiency of a network in carrying out its essential func- 

tionality ( [1–3] ). Among these is the case of clustering coefficient 

that measures the tendency to which nodes in a graph tend to 

cluster together. Indeed, in most real networks empirical evidence 

shows that nodes tend to form tightly-knit groups characterized by 

a relatively high density of ties. In other words, the clustering coef- 

ficient is a measure of cohesion and it was developed with the aim 

to quantify the level to which a network manifests this property. 

Different definitions of clustering coefficient have been pro- 

posed for binary undirected networks (BUN). A global coefficient, 

often referred as transitivity, gives an overall indication of the clus- 

tering in the network being measured as the fraction of triplets 

(i.e. three nodes with at least two ties among them) that are closed 

(i.e. they form a triangle) (see [4,5] ). A local version has been also 

introduced in [3] in order to quantify how close the node’s neigh- 

bours are from being a clique. Although it suffers from a number 

of limitations 1 (see [6,7] ), the local coefficient is capable to capture 

the degree of social embeddedness of single nodes and for instance 
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it is used by several mainstream indicators to assess small-world 

property of a network (see [3,8,9] ). Unlike the local clustering co- 

efficient, the transitivity does not suffer from the same type of 

limitations because it is not an average of individual fractions cal- 

culated for each node. However, in many context this additional 

information is needed for each node. Indeed networks could be 

highly clustered at local level, despite showing a transitivity coef- 

ficient significantly low (see [10] page 83). Hence a more node- 

oriented analysis is often required to better investigate the net- 

work cliquishness. 

It is to be mentioned that other measures of neighbours’ inter- 

connectedness have also been provided in the literature, but fo- 

cusing on different topological aspects. For instance, the overlap- 

ping coefficient (see [7,11–14] ) considers the number of triangles 

to which an edge belong. The aim is to catch the relative topo- 

logical overlap of the neighborhood of two users, representing the 

proportion of their common friends. A node overlapping index has 

also been obtained as the ratio of the sum of these overlapping 

indices to the number of neighbours (see [11] ). This measure can 

be interpreted as an other form of clustering attachment mea- 

sure (see [15] ). Overlapping concept has been also applied in com- 

munity detection context. In this framework, the intuition behind 

overlapping clustering is based on the fact that real complex net- 

works usually are not divided into sharp sub-networks, but typi- 

cally nodes may naturally belong to more than one communities. 

Thus, being able to identify the overlapping communities of di- 

rected networks, could give fruitful insights about network struc- 

ture (see [16–18] ). 
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Furthermore, while binary networks allowed to properly model 

many real-world phenomena, further complexity is often needed 

to adequately catch heterogeneous strengths and asymmetric con- 

nections between pairs of nodes. In these contexts weighted and 

directed networks are fruitful tools. Furthermore, it is well known 

that many real-world complex systems involve non-mutual re- 

lationships, which imply non-symmetric adjacency or weighted 

matrices. As regard to this issue, the transitivity coefficient has 

been extended to both binary and weighted directed networks in 

[19] . The proposed generalization retains the information encoded 

in the weights of ties. At the same time, local clustering coeffi- 

cient have been also generalized to weighted undirected networks 

(WUN) by considering different ways to weight the neighbours of a 

node (see [20,21] , etc.). See [22,23] for a review of such definitions 

in the literature. 

In this context Fagiolo ( [24] ) attempts to bridge different ap- 

proaches (proposed in [21,25] ) in order to present a unifying 

framework for computing local clustering for weighted directed 

networks (WDN). In addition to the measures already discussed in 

[21,25] , the coefficient proposed in [24] allows to explicitly account 

for directed and weighted links and to define a specific clustering 

coefficient for any type of triangle pattern. However, as partially 2 

noticed also in [26] , this coefficient does not properly account for 

the strength of a node, resulting in a clustering coefficient too af- 

fected by weights. 

To overcome this issue, we propose a new local clustering coef- 

ficient for weighted and directed networks based on a generaliza- 

tion of the clustering coefficient developed in [20] . On one hand, 

our proposal takes into account the triangles that the neighbours 

of a node i form, completely preserving the initial idea of the clus- 

tering coefficient. On the other hand, the weights of these triangles 

also affect the coefficient. In our proposed clustering coefficient we 

do not consider the weight of the closing link of a triangle (i.e. the 

link between adjacent neighbours of i ). This is because the aim of 

the clustering coefficient is to assess the likelihood of the occur- 

rence of this link that closes the triangle, and not its weight. A 

proper normalization of the local coefficient is assured by consid- 

ering the strength of the node. Hence, both the number of trian- 

gles and their weights are captured by our coefficient, that in this 

way well replicate, for weighted and directed networks, the idea of 

nodes to be “clustered together”. 

Numerical results point out that the proposed coefficient proves 

effective in capturing both the number of closed triangles and the 

presence of strong neighbours (i.e. with higher weights), that clas- 

sical indicators fail to correctly detect. The coefficient treats all 

possible directed triangles as they were the same, as if directions 

of edges were irrelevant. Furthermore, as in [24] , we are able to 

provide alternative coefficients that only consider particular types 

of directed triangles. In other words, the proposed measure is ca- 

pable to distinguish different patterns of directed triangles from a 

node perspective. In this way, we allow for different interpretation 

in terms of the resulting patterns. 

The paper is organized as follows. Section 2 introduces 

some basic definitions and notations used in the paper; 

Section 2.2 briefly reviews some local clustering coefficients pro- 

vided in the literature for weighted undirected networks. Also the 

clustering coefficient, given in [24] for weighted directed networks, 

is reported. Section 3 describes a new clustering coefficient for 

weighted directed networks proposed in order to overcome some 

pitfalls of the existing one. Additionally, we look at directed net- 

works at different “observation scales” in order to separately catch 

different patterns. Four clustering coefficients are proposed, whose 

weighted average coincides with the overall coefficient. A toy ex- 

2 [26] compares alternative clustering coefficients for complete weighted graphs. 

ample compares our proposal with the existing coefficient given in 

[24] . Section 4 provides numerical results, to compare our proce- 

dure to classical coefficients on the empirical networks considered. 

Section 5 concludes. 

2. Preliminaries 

2.1. Basic notations 

We assume that the reader is familiar with standard graph the- 

ory definitions. We only remind here the notations we use in the 

rest of the text. Formally, a directed graph (or digraph) D = (V, A ) 

is a pair of sets V and A , where V is the set of n vertices (or nodes) 

and A is the ordered set of m pairs (arcs) of vertices of V ; if ( i, j ) 

or ( j, i ) ∈ A , then vertices i and j are adjacent. 

A weight w ij > 0 can be associated with each link ( i, j ) so that 

a weighted directed graph is obtained; we assume that, if omitted, 

the weight w ij of an arc ( i, j ) is equal to 1 (binary case). In general, 

both adjacency relationships between vertices of D and weights 

on the arcs are described by a nonnegative, real n -square matrix 

W (the weighted adjacency matrix). In the unweighted case, ma- 

trix W is simply the classical binary matrix A (the adjacency ma- 

trix). In the next, we will consider the case of either unweighted 

or weighted graphs with no loops (i.e. a ii = 0 , w ii = 0 ∀ i ). 

We call G = (V, E) the graph in which every edge corresponds 

to an arc ( i, j ) or ( j, i ) in D = (V, A ) . Observe that G is a weighted 

graph and to every arc ( i, j ) with weight w ij > 0 corresponds an 

edge ( i, j ) with weights w i j = w ji . G represents the “symmetric 

case” of D . The matrix W (or A , for the unweighted case) asso- 

ciated to G is, of course, a symmetric matrix. The ( i, j ) element of 

the k −power of the A is the number of walks of length k from 

i to j . 

Using the same notation as in Fagiolo ( [24] ), we define the in- 

degree (respectively out-degree) of a node i as the number of arcs 

pointing towards (respectively starting from) i : 

d in i = 

∑ 

j � = i 
a ji = A 

T 
i 1 (1) 

d out 
i = 

∑ 

j � = i 
a i j = A i 1 . (2) 

where A i and A 

T 
i are respectively the i -th row of A and of its trans- 

pose, 1 is the unit column vector of n elements. The degree d tot 
i 

of 

a vertex is then: 

d tot 
i = d in i + d out 

i = ( A 

T + A ) i 1 . (3) 

Bilateral arcs between the node i and its adjacent nodes, if any, are 

represented as: 

d ↔ 

i = 

∑ 

j � = i 
a i j a ji = A 

2 
ii . (4) 

Moving to the weighted case, the previous definitions can be 

replaced by the strength of a node i : 

s in i = 

∑ 

j � = i 
a ji w ji = ( A 

T W ) ii = W 

T 
i 1 (5) 

s out 
i = 

∑ 

j � = i 
a i j w i j = ( AW 

T ) ii = W i 1 . (6) 

The total strength of i is then: 

s tot 
i = s in i + s out 

i = 

∑ 

j � = i 

(
a ji w ji + a ij w ij 

)

= 

(
A 

T W + AW 

T 
)

ii 
= 

(
W 

T + W 

)
i 
1 . (7) 
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