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1. Introduction 

Progress in the study of the gas discharge physics under high 

pressure is largely determined by knowledge of the physical prop- 

erties of the discharge. Especially, this corresponds the initial stage, 

which in gases and liquids is accompanied by the generation and 

propagation of specific ionization waves. The wide practical appli- 

cation of gas discharge various forms stimulates studies of their 

spatial structure. 

In [1] , the initial stage of the development of the ionization 

wave front instability due to the multiplication of electrons of low 

background density is considered. An expression for the growth 

rate of small perturbations is found. It is shown that the propaga- 

tion front is unstable with respect to small perturbations forming 

protrusions or dips. The growth rate of the instability can be de- 

fined as a function of the reduced field strength that is universal 

for a given gas. 

In [2] , the microstructure of the current channel was experi- 

mentally detected in the breakdown of homogeneous air gaps by 

voltage pulses of the nanosecond range in electric fields insuffi- 

cient to form of a streamer. As a mechanism for the formation of a 

microstructure, the development of the instability of the ionization 

process in the avalanche stage is proposed, that leads to the for- 

mation of a self-similar spatial structure. It is shown that the mi- 
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crostructure of streamer discharges in homogeneous gaps can also 

be explained within the framework of the proposed model. 

There is a large number of both experimental and theoreti- 

cal studies on the stability of ionization fronts. Nevertheless, there 

is no unified theory of the development of instability. The latter 

is due to the complexity of accounting for all important factors 

affecting processes. Thus, the development of new effective ap- 

proaches in this field of research is extremely important. 

Today, in the study of complex systems, an analytical approach 

based on the use of the mathematical apparatus of fractional 

integro-differentiation is of great interest. At present, it can be con- 

sidered established that the mathematical apparatus of integro- 

differentiation of fractional order [3-7] adequately expresses the 

fundamental physical concepts underlying the physics of systems 

with deterministic chaos, allowing to take into account in a natural 

way spatial and temporal non-locality and features of fractional- 

order geometry. The use of this apparatus makes it possible to in- 

terpret with great accuracy complex experimental data for such 

phenomena as anomalous diffusion [8] , heat transfer in media with 

a complex structure [9] , dispersion transport in semiconductors 

[10] , calculation of thermodynamic properties of surfaces [11] , etc. 

In the works on the use of fractional analysis known to date, 

various interpretations of fractional derivatives are given, starting 

from differentiation in a space with fractional dimension to the 

description of non-stationary processes and anomalous transport 

phenomena. There are various critical points of view about such 

interpretations. We have previously proposed our interpretation in 

[6,7] . 
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In [6,7] , using a variety of approaches, a number of phenom- 

ena in quantum-statistical systems described by fractional-order 

equations were considered. The main emphasis is on the physi- 

cal nature of the occurrence of fractional derivatives in the equa- 

tion. It turned out that the introduction of fractional derivatives 

in the equation for the Green’s function is analogous to the in- 

troduction of the inter-particle interaction. As a result, the equa- 

tion was obtained in a state analogous to the van der Waals equa- 

tion. Further, we generalized the well-known method of statistical 

physics of introducing the interaction parameter into the system. 

We have obtained a whole class of various systems with a Hamil- 

tonian involving the interaction, which can be described by means 

of a fractional-differential approach. Such an approach can be very 

convenient, because it is often impossible to describe systems with 

a Hamiltonian involving interaction by ordinary methods. Further, 

in our paper [7] , in the framework of the Hartree–Fock approx- 

imation, the inverse problem is considered when, according to 

the known form of the fractional-differential equation, the inter- 

particle interaction potential was obtained, which can lead to such 

a form. Thus, the appearance of fractional derivatives in the equa- 

tions describing the many-particle system we associate with the 

inter-particle interaction. 

Finally, we note following. As is well known, the turbulent state 

is natural for a plasma. In this state, the plasma obeys the laws of 

anomalous diffusion [12-16] . In such a state, the mean free paths 

of particles are power functions [16] . This can lead to a fractional 

equation for the distribution function (details see in [8] ). 

It should be noted that fractional derivatives cannot be used 

on fractal since it cannot be considered a linear (vector) space. A 

mathematically correct approach is given in the books [17,18] . 

Using an approach based on the kinetic equation of fractional 

order on the time variable, two types of instability in a gas dis- 

charge are investigated: the instability of the electron avalanche 

and the sticking instability in a nonself-maintained discharge 

( Fig. 1 ). 

2. Instability of electron avalanche in gas discharge 

A standard approach to investigating the stability of an 

avalanche is based on the use of the kinetic equation for the elec- 

tron concentration in the avalanche (an adiabatic approximation is 

used when ion motion is neglected) 

∂n 

∂t 
= αυdr n − υdr 

∂n 

∂z 
+ D e �n. (1) 

where α is the Townsend ionization coefficient, υdr is the electron 

drift velocity, D e is the electron diffusion coefficient, the axis Oz is 

directed along the field. In Eq. (1) we pass to the Riemann-Liouville 

fractional derivatives [3] 

∂ β−∞ x f (x ) = 

1 

Г(1 − { β} ) 
∂ [ β] +1 

∂ x [ β] +1 

x ∫ 
−∞ 

f ( ξ ) dξ

( x − ξ ) 
{ β} . (2) 

where [ β] is the integer part of β and 0 ≤ { β} < 1 is the fractional 

part of β . (Note that the fractional derivative (2) is also called the 

Liouville derivative [19] ). Then 

1 

t 0 
∂ β−∞ τ n = αυdr n − υdr 

∂n 

∂z 
+ D e �n, (3) 

where τ = t/ t 0 is a dimensionless time, t 0 is the some character- 

istic time. The problem that solving in the present paper is a rare 

case when the parameter t0 is not included in the final result. In 

general, as t0 one can use, for example, the characteristic ioniza- 

tion time. We will be sought the solution in а standard way in a 

Fig. 1. Dependence of the instability parameter: а ) on the order of the fractional 

derivative for different values of the angle θ , b) on the angle θ for different values 

of the order of the fractional derivative. 

following form: n ∝ exp ( −iωτ + ikr ) . Then 

1 

1 

t 0 
( −iω ) 

β = αυdr − i υdr k z − D e k 
2 , (4) 

where k = 2 π / λ, λ is a characteristic size of the disturbance inho- 

mogeneity. Next, we note that 

( −iω ) 
β = | ω | β exp 

(
−iβ

π

2 

+ iβ arctan 

Im ω 

Re ω 

)
. (5) 

Then 

| ω | β cos β
(

arctan 

Im ω 

Re ω 

− π

2 

)
= t 0 

(
αυdr − D e k 

2 
)

| ω | β sin β
(

arctan 

Im ω 

Re ω 

− π

2 

)
= −t 0 υdr k z 

The last equations give 

Im ω = t 
1 
β

0 

((
αυdr − D e k 

2 
)2 + υ2 

dr k 
2 
z 

) 1 
2 β

cos 

(
1 

β
arctan 

υdr k z 

αυdr − D e k 2 

)
(6) 

The condition for the onset of instability is the following in- 

equality 

Im ω ≥ 0 . (7) 

1 We used the property of the fractional Riemann-Liouville derivative: ∂ β−∞ x e ax = 

a βe ax . 
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