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a b s t r a c t 

Recently several works have studied the following model of finance 

˙ x = z + (y − a ) x, ˙ y = 1 − by − x 2 , ˙ z = −x − cz, 

where a , b and c are positive real parameters. We study the global dynamics of this polynomial differ- 

ential system, and in particular for a one–dimensional parametric subfamily we show that there is an 

equilibrium point which is a global attractor. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction and statement of the results 

We consider the following polynomial differential system in R 

3 

(see [1–3,5–7] ) 

˙ x = z + (y − a ) x, 

˙ y = 1 − by − x 2 , 

˙ z = −x − cz, 

(1) 

where the parameters a , b , c > 0. This model describes the time 

variation of three state variables: the interest rate x , the invest- 

ment demand y and the price index z . Here a is the saving amount, 

b is the cost per investment and c is the elasticity of demand of 

commercial market. The factors that influence changes in x mainly 

come from an excess of investment over savings and the structural 

adjustment from good prices. Changing rates in y are in proportion 

to the rate of investment and in proportion to an inversion with 

the cost of investment and interest rates. Changes in the variable z 

are controlled by a contradiction between supply and demand and 

are influenced by inflation rates. 

In this paper we shall provide the complete description of the 

global dynamics of this polynomial differential system not only on 

R 

3 but also in its compactification for some values of the parame- 

ters. In this way we will also control the orbits which come or go 

to infinity. So, this complete information about the dynamics of the 
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polynomial differential system (1) will help to a better understand- 

ing of it. More precisely, we want to describe the α-limit sets and 

the ω-limit sets of all orbits of system (1) for some values of the 

parameters. Let ϕ(t) = ϕ(t, p) be the solution of system (1) pass- 

ing through the point p ∈ R 

3 when t = 0 , defined on its maximal 

interval I p = ( α(p) , ω (p)) . If ω(p) = ∞ , then the ω-limit set of ϕ
is 

ω(φ) = { q ∈ R 

3 : ∃{ t n } with t n → ∞ and ϕ(t n ) → q as n → ∞} 
Similarly, if α(p) = −∞ then the α-limit set of ϕ is 

α(φ) = { q ∈ R 

3 : ∃{ t n } with t n → −∞ and ϕ(t n ) → q as n → ∞} 
For more characterizations of the α-limit set and of ω-limit set of 

an orbit, see for instance Section 1.4 of [4] . 

Note that system (1) is defined in the open manifold R 

3 . For 

studying its orbits in a neighborhood of the infinity (which has to 

be done if one wants to study the α and ω-limit sets of the sys- 

tem) we shall identify R 

3 with the interior of the unit ball 

B = { (x, y, z) ∈ R 

3 : x 2 + y 2 + z 2 ≤ 1 } 
centered at the origin, and we shall extend analytically this flow 

to its boundary S 
2 (the infinity). This compactification is due to 

Poincaré, and this ball is called the Poincaré ball . The polynomial 

differential system (1) extended to this closed ball is called the 

Poincaré compactification of the polynomial differential system ( 1 ) . 

For a precise definition of all these notions see the appendix. We 

shall note that the extended flow to the Poincaré ball leaves in- 

variant the boundary of the ball (the infinity) in the sense that if 
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Fig. 1. Phase portraits at infinity of system (1) . The boundary at infinity of the 

plane x = 0 . 

an orbit has a point in this boundary then the whole orbit is con- 

tained in it. 

As explained above the infinity is invariant by the Poincaré

compactification of system (1) . The flow on this boundary (a two 

dimensional sphere S 2 ) is described in the next theorem. For a def- 

inition of topologically equivalent phase portraits, see for instance 

section 1.3 of [4] . 

Theorem 1. The phase portrait of the Poincaré compactification of 

system (1) at the infinity S 2 is topologically equivalent to the one de- 

scribed in Fig. 1 . 

Let R [ x, y, z] be the ring of real polynomials in the variables x , 

y , z . We say that F = F (x, y, z) is a Darboux polynomial of system 

(1) if it satisfies 

∂F 

∂x 
˙ x + 

∂F 

∂y 
˙ y + 

∂F 

∂z 
˙ z = kF 

where k = k (x, y, z) is a real polynomial of degree at most one 

called the cofactor of F and ( ̇ x , ˙ y , ˙ z ) are given in (1) . If the cofactor 

of F is zero, then F ( x , y , z ) is a polynomial first integral of system (1) . 

If F ( x , y , z ) is a Darboux polynomial then the surface F (x, y, z) = 0 

is an invariant algebraic surface. 

We say that a C 1 function I ( x , y , z , t ) is an invariant of the dif- 

ferential system (1) if I ( x , y , z , t ) is constant for all values of t for 

which the solution ( x ( t ), y ( t ), z ( t ) is defined. When an invariant 

function is independent of the time t , then it is a first integral . 

When a system has a Darboux polynomial F with a constant 

factor k = k 0 ∈ R , then the function I(x, y, z, t) = F (x, y, z) e −k 0 t is 

called a Darboux invariant of that system, see Chapter 8 of [4] . 

Theorem 2. System (1) with 

a = −4 + k 2 0 

2 k 0 
, b = −k 0 

2 

, c = −k 0 
2 

, (2) 

where k 0 < 0 has the Darboux polynomial 

F k 0 (x, y, z) = k 2 0 x 
2 + k 2 0 z 

2 + (2 + k 0 y ) 
2 

and the Darboux invariant 

I k 0 (x, y, z, t) = 

(
k 2 0 x 

2 + k 2 0 z 
2 + (2 + k 0 y ) 

2 
)
e −k 0 t . 

For the values of the parameters given in (2) we have that F k 0 = 

0 is an invariant algebraic surface. 

For the values ( a , b , c ) given in (2) , system (1) can be written 

as 

˙ x = 

4 + k 2 0 

2 k 0 
x + z + xy, 

˙ y = 1 + 

k 0 y 

2 

− x 2 , 

˙ z = −x + 

k 0 z 

2 

, 

(3) 

where k 0 < 0. In the following theorem we describe the dynamics 

of system (3) . We recall that a point p is globally asymptotically sta- 

ble for system (3) if every solution ( x ( t ), y ( t ), z ( t )) of system (3) is 

defined for t → ∞ and tends to p when t → ∞ . 

Theorem 3. For the values of the parameters ( a , b , c ) given in (2) the 

phase portrait of system (3) in R 

3 is as follows: the invariant alge- 

braic surface F k 0 (x, y, z) = 0 is formed by the point q = (0 , −2 /k 0 , 0) , 

which is the unique equilibrium point of system (3) , and it is globally 

asymptotically stable. 

In the next theorem we describe the α- and the ω-limit sets of 

all orbits contained in B of system (3) . Let P be a diffeomorphism 

such that P (R 

3 ) is equal to the interior of the Poincaré ball. Then 

we denote the finite isolated singular point q of system (3) given 

in Theorem 3 as p = P (q ) . 

Theorem 4. Let γ be an orbit of system (3) . 

(a) If γ is contained in the boundary of the Poincaré ball B and is 

different from a singular point, then its α- and ω-limit sets are 

different infinite singular points. 

(b) If γ is contained in the interior of B and is different from the sin- 

gular point q = (0 , −2 /k 0 , 0) , then the following two statement 

hold. 

(b.1) The α-limit set of γ is an infinite singular point. 

(b.2) The ω-limit set of γ is the unique finite singular point q. 

Note that in both cases such a γ is a heteroclinic orbit. 

The proofs of all theorems are given in the next section. 

We remark that Theorem 1 works for system (1) , i.e. for the 

system with the three parameters a , b and c . While the other the- 

orems only work for the one-dimensional subfamily of systems 

(1) defined by condition (2) . 

2. Proof of the results 

Proof of Theorem 1. For studying the infinity of the Poincaré ball 

B we analyze the flow at infinity for the local charts U 1 , U 2 and U 3 , 

see the appendix. 

In the local chart U 1 system (1) writes 

˙ z 1 = −1 − z 2 1 + (a − b) z 1 z 3 + z 2 3 − z 1 z 2 z 3 , 

˙ z 2 = −z 3 − z 1 z 2 + (a − c) z 2 z 3 − z 2 2 z 3 , 

˙ z 3 = z 3 (−z 1 + az 3 − z 2 z 3 ) . 

(4) 

System (4) restricted at the infinity (that is with z 3 = 0 ) becomes 

˙ z 1 = −1 − z 2 1 , ˙ z 2 = −z 1 z 2 . 

so there are no singular points at infinity in the local chart U 1 . 

In the local chart U 2 system (1) writes 

˙ z 1 = z 1 − (a − b) z 1 z 3 + z 2 z 3 + z 3 1 − z 1 z 
2 
3 , 

˙ z 2 = −z 1 z 3 + (b − c) z 2 z 3 + z 2 1 z 2 − z 2 z 
2 
3 , 

˙ z 3 = z 3 (bz 3 + z 2 1 − z 2 3 ) . 

(5) 

System (5) restricted at the infinity (that is with z 3 = 0 ) becomes 

˙ z 1 = z 1 (1 + z 2 1 ) , ˙ z 2 = z 2 1 z 2 , 
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