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a b s t r a c t 

Chaotic attractors in the classical Lorenz system have long been known as self-excited attractors. This 

paper, for the first time, reveals a novel hidden chaotic attractor in the classical Lorenz system. Either 

a self-excited or a hidden chaotic attractor is now possible in the classical Lorenz system depending on 

values of both system parameters and initial conditions. A systematically exhaustive computer search is 

employed to directly search for the hidden chaotic attractor with elegant values of both system parame- 

ters and initial conditions. Time series of trajectories, Lyapunov exponents, and bifurcations of the hidden 

chaotic attractor are reported. Basins of attraction of individual equilibria are depicted to verify that the 

hidden chaotic attractor is found. Dynamic regions of attractors are illustrated to reveal seamless connec- 

tions between self-excited and hidden chaotic attractors in the classical Lorenz system with wide ranges 

of parameters. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Since 1963, an era of chaos has been opened by a young meteo- 

rologist Edward Lorenz who accidentally discovered the celebrated 

Lorenz system in a set of three coupled first-order ordinary differ- 

ential equations (ODEs) [1] . His discovery has stimulated others to 

explore more chaotic systems (e.g. Rössler [2] , jerk [3,4] , Circulant 

[5,6] , hyperjerk [7,8] , hyperchaotic [7,9,10] systems) and chaotic cir- 

cuits (e.g. Lorenz-based chaotic circuits [11,12] , Chua’s circuits [13–

15] , Wien-type chaotic oscillator [16] , chaotic jerk circuits [17–20] ). 

Chaos theory has therefore been an important branch of nonlinear 

dynamics, modern physics, mathematics and engineering. Studies 

of chaos have increasingly attracted much attention due to its pos- 

sible applications in various fields of science and technology. 

Since 2010, the first hidden chaotic attractor [21] has been dis- 

covered in a generalized Chua’s system. Attractors are therefore 

classified as self-excited and hidden attractors [22,23] . The clas- 

sification involves its basin of attraction, which refers to a set of 

initial conditions whose trajectories tend to the attractor. An at- 

tractor is called a self-excited attractor if its basin of attraction in- 

tersects with any open neighborhood of an equilibrium, otherwise 

it is called a hidden attractor [24] . Multistability in hidden attrac- 

tors can cause major problems to engineering and industry appli- 

cations, and may allow unexpected disasters in structures such as 

drilling rigs failures [25] and bridge collapses [26] , or allow catas- 
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trophic events such as the crash of the aircraft YF-22 Boeing in 

1992 due to the sudden shift to the undesired attractor [27] . It is 

therefore very important to reveal all possible attractors in a sys- 

tem, such that appropriate controlling methods can be applied to 

prevent such serious occurrences [28,29] . 

An analytical-numerical algorithm has been proposed by 

Leonov et al. [21,23] to localize an appropriate initial condition 

for a hidden attractor. The algorithm however requires a combi- 

nation of analytical and numerical procedures, which are applica- 

ble to only a system of potentially periodic oscillation. In addition, 

the algorithm is not systematic due to some random adjustments 

which depend upon designer’s experiences and talents [30] . Exam- 

ples of hidden attractors based on this algorithm can be found in 

[23,24,31] . 

On the other hand, Sprott et al. [30,32–37] have employed a tra- 

ditionally exhaustive search for chaos in some unusual chaotic sys- 

tems of special equilibria where the chaotic attractors are always 

known to be hidden. Examples of such unusual systems include 

chaotic systems with no equilibrium [32] , one stable equilibrium 

[33] , a single unstable node [34] , a line equilibrium [35] , a plane 

of equilibria [30] , a square equilibrium [36] , or surfaces of equilib- 

ria [37] . The traditional search for chaos in these unusual systems, 

however, cannot be used to detect and separate hidden attractors 

from self-excited attractors in a typical system where its attractors 

can be self-excited or hidden attractors depending on values of ini- 

tial points and system parameters, such as the classical Chua’s sys- 

tem and the classical Lorenz system. 

Recently, Munmuangsaen et al. [38] has developed a new com- 

puter methodology of a systematically exhaustive search for hid- 

den and self-excited attractors in a typical system that may have 

https://doi.org/10.1016/j.chaos.2017.12.017 

0960-0779/© 2017 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.chaos.2017.12.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.12.017&domain=pdf
mailto:buncha.munmuangsaen@studentmail.siit.tu.ac.th
mailto:nopnop99@hotmail.com
https://doi.org/10.1016/j.chaos.2017.12.017


62 B. Munmuangsaen, B. Srisuchinwong / Chaos, Solitons and Fractals 107 (2018) 61–66 

an unstable saddle equilibrium. Such a search for hidden attractors 

has been applied to the classical Chua’s system, and three new hid- 

den attractors have been revealed. Although a hidden attractor in 

the generalized Lorenz system has recently been reported [24] , a 

question has been raised whether a hidden attractor is possible in 

the classical Lorenz system. It is a challenge whether the new com- 

puter methodology of the exhaustive search for hidden attractors 

developed in [38] will be able to detect and separate a hidden at- 

tractor from a self-excited attractor in the classical Lorenz system. 

What follows is the answer. 

2. A novel hidden chaotic attractor in the classical Lorenz 

system 

The classical Lorenz system is described by a set of three cou- 

pled first-order ODEs in dimensionless coordinates as [1,11,12] 

˙ x = a (y − x ) 
˙ y = −xz + rx − y 
˙ z = xy − bz. 

(1) 

The usual values of system parameters originally introduced by 

Lorenz are a = 10, r = 28 and b = 8/3, which have produced a self- 

excited chaotic attractor in a butterfly shape. The system (1) has 

three equilibrium points as 

S 1 = (0 , 0 , 0) 

S 2 = (−
√ 

b(r − 1) , −
√ 

b(r − 1) , (r − 1)) 

S 3 = ( 
√ 

b(r − 1) , 
√ 

b(r − 1) , (r − 1)) . 

(2) 

It follows from (2) that both system parameters b and r determine 

the stability of the equilibrium points, whereas the system param- 

eter a does not. It is therefore reasonable that both parameters b 

and r are adjustable, whereas the parameter a will be left as a fixed 

constant. 

The systematically exhaustive search for hidden attractors de- 

veloped in [38] is applied to system (1) . The major difference from 

[38] is that the initial conditions used in this paper are chosen 

from a Gaussian distribution with mean = 0 and variance = 10. The 

reason is to expand the search fields due to the fact that the at- 

tractor size of the Lorenz system is typically 10 times larger than 

the attractor size of the classical Chua’s system. As a result, newly 

found system parameters are, for example, a = 4, r = 29 and b = 2, 

and a newly found initial condition is, for example, L 1 = ( x 0 , y 0 , 

z 0 ) = (5, 5, 5). Such newly found values of the parameters and ini- 

tial condition are elegant in the sense that they are all integers. 

For a = 4, r = 29 and b = 2, it follows from (2) that three equi- 

librium points are at S 1 = ( x 1 , y 1 , z 1 ) = (0, 0, 0), S 2 = ( x 2 , y 2 , z 2 ) = (–

7.4833, –7.4833, 28), and S 3 = ( x 3 , y 3 , z 3 ) = (7.4833, 7.4833, 28). 

At the equilibrium point S 1 , the corresponding eigenvalues are (–

13.3743, 8.3743, –2). Since it has one positive real eigenvalue and 

two negative real eigenvalues, the equilibrium point S 1 is therefore 

an unstable saddle point with index 1 where the index refers to 

the number of eigenvalues whose real parts are positive. At the 

equilibrium points S 2 and S 3, the corresponding eigenvalues are 

(–6.8764, –0.0618 ± 8.0713 i ). Since they have one real eigenvalue 

and a pair of complex conjugate eigenvalues, with all negative real 

parts, the equilibrium points S 2 and S 3 are therefore stable focus- 

node points. 

2.1. A hidden chaotic attractor and point attractors 

Fig. 1 illustrates a newly found hidden chaotic attractor in green 

on an ( x, y ) plane using the initial condition L 1 = ( x 0 , y 0 , z 0 ) = (5, 

5, 5). In addition, Fig. 1 also includes two point attractors in blue 

and red, which converge on the stable equilibrium points S 2 and 

S 3 , respectively. An initial condition of the blue point attractor for 

S 2 is at L 2 = ( x 0 , y 0 , z 0 ) = (0.1, 0, 0), whereas an initial condition 

Fig. 1. A new hidden chaotic attractor (green) and two point attractors (blue and 

red) on an ( x, y ) plane of the classical Lorenz system. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 2. A new hidden chaotic attractor (green) and two point attractors (blue and 

red) on an ( x , z ) plane of the classical Lorenz system. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

of the red point attractor for S 3 is at L 3 = ( x 0 , y 0 , z 0 ) = (–0.1, 0, 0). 

Fig. 2 alternatively displays all attractors in Fig. 1 on an ( x, z ) plane. 

The spectrum of Lyapunov exponents (LEs) of the hidden chaotic 

attractor in green is ( λ1 , λ2 , λ3 ) = (0.6707, 0, –7.6707), calculated 

with 10 7 iterations (to ensure that chaos is neither numerical arti- 

facts nor chaotic transients). The positive Lyapunov exponent con- 

firms chaoticity of the found hidden chaotic attractor. The Kaplan–

Yorke dimension is D KY = 2.0874. The correlation dimension based 

on the method described in [39] is D C = 2.0895 ± 0.01. 

Fig. 3 illustrates a green time series of the hidden chaotic at- 

tractor, and two red and blue time series of the two point attrac- 

tors. It can be seen from Fig. 3 that the green time series of the 

hidden chaotic attractor swings between positive and negative val- 

ues of x , and appears in a similar manner to the time series of 

the best known butterfly-shaped self-excited Lorenz attractor. By 

contrast, the blue and red time series of the two point attractors 

are displayed in the negative and positive values of x , which are 

gradually attracted into the stable focus-node points S 2 and S 3 , re- 

spectively. 

2.2. A smooth transition from a self-excited to a hidden chaotic 

attractor 

For 1.8 < b ≤ 1.985, the three colored attractors in Figs. 1 to 

3 become three colored self-excited chaotic attractors. Fig. 4 is 

separated into two areas, an upper-half area (UHA) and a lower- 

half area (LHA), each of which illustrates three colored plots in 
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