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A long Josephson junction comprising regions with phase discontinuities driven by an external ac-drive
is studied. An inhomogeneous sine-Gordon equation is used, that depicts the dynamics of long Joseph-
son junctions with phase discontinuities. Perturbation technique along with asymptotic analysis and the
method of averaging are applied to obtain an average dynamics in the form of double sine-Gordon equa-
tions for both small and large driving amplitudes. From the obtained average dynamics, it is determined
that, the external ac-drive may affect the presence of the ground state of the junction. Specifically, the
cases for 0 — k and 0 — r — 0 junctions are discussed. In the presence of an external ac-drive, the criti-
cal facet length b, is analyzed for 0 — 7 — 0 junction above which the ground state is non-uniform. The
critical bias current y. for 0 — k junction is investigated, at which the junction switches to a resistive
state. Further, the interaction of localized defect modes and the fast oscillating drive is studied for both
0 —« and 0 — 7 — 0 junctions, which is explained by using Lagrangian approach. Numerical simulations
are performed to support our analytical calculations.

© 2017 Published by Elsevier Ltd.

1. Introduction

In the recent century, an impressive consideration has been
given to the study of Josephson junctions. Josephson junctions are
important solid-state tools on which experimental analysis can be
carried out with relative clarity. In 1962, Brian Josephson predicted
theoretically that, when two superconductors are brought close to-
gether with a thin layer of an insulator in between them, electrons
could "tunnel;; through the non-superconducting barrier from the
one superconductor to the other. It is due to the quantum mechan-
ical waves in the two overlapped superconductors. The tunneling
of electrons is called dc-Josephson effect and the device is named
after its discovery as Josephson junction [1]. There have been many
applications of Josephson junctions in several fields, for example,
data-processing systems and microwave oscillators. The precise in-
vestigation of Josephson junctions gives many facts on the stabil-
ity of numerous physical systems, such as, ferromagnetic systems,
charge-density waves and anti-ferromagnetic systems.

If we represent a Josephson phase by 1(x, t) then I[=
I sin ¥ (x, t) is called current phase relation. A novel behaviour in
Josephson junctions was first investigated by Bulaevskii et al. [2].
In experiments, it was observed that Josephson vortex transport-
ing a fraction of magnetic flux quantum. This inconceivable phe-
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nomenon could be performed by intrinsically constructing piece-
wise fixed phase discontinuity ®(x). This transformed the super-
current relation into I = I sin(yy + ®). Various experimental meth-
ods are performed to create nonlinearity in the Josephson phase
[3-5]. These include abrikosov vortex [6], connection of magnetic
impurities [7], pair of injectors [8] and multi-layer junctions with
control thickness over the ferromagnetic barrier [9-11]. Josephson
junctions with phase discontinuity have promising applications in
information processing and data storage [12,13].

In ideal long Josephson junctions, the phase difference ¥(x, t)
satisfies a sine-Gordon equation. The sine-Gordon equation arises
extensively in the study of nonlinear systems, because of its mul-
tisoliton solutions, solitary wave solutions and periodic solutions.
The elementary nonlinear confined solutions of the sine-Gordon
model can be separated into two main parts, that is, kink and
breather. The ‘kink’ predicts the static and dynamic properties
of localized excitations, while ‘breather’ has a solution that os-
cillates in time and localized in space and has frequency lying
under the linear band. The sine-Gordon model predicts different
physical phenomena, that is, the oscillation of localized modes in
plasma physics [14], pattern configuration [15], stochastic propaga-
tion [16] and information transport in microtubules [17].

Here, we consider the spatially perturbed sine-Gordon equa-
tion

Vit — Y +sin (Y + ©) =y +a e + f cos (1), (1)
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to study long Josephson junctions with ac-drive. Here i is the
variance between the phases of the wave functions, y is a value
of bias current and « is a damping parameter. The constant f is
the amplitude of oscillating ac-drive and €2 is driving frequency of
the system. Because of the nondimensionalization of the temporal
variable t, the Josephson plasma frequency corresponds to €2 = 1.
A theoretically relevant study of Eq. (1) for £ <1 has been ana-
lyzed previously [18-20]. Here, we study an experimentally rele-
vant case 2> 1. The phase-shifts configurations ®(x) considered
herein are

a0y _ )T |x[ <D,

OKx) = {0’ x| > b, (2)
0, x<0O,

OKx) = {K’ x>0, (3)

which are known as 0 — 7 — 0 and O — « junctions respectively. For
physically meaningful solution, we use the continuity conditions

Y (&b, 0) =Y (&b7.0).  Yu(£b".0) = Yx(£b™,0), (4)

and

Y(E07) =¥ (07),  Yx(£07) = Y (07), (5)

for 0—m — 0 and 0 —« junctions. The unperturbed sine-Gordon
equation together with a phase shift (2) has a uniform ground state
Yo =0( mod 2m). The stability analysis shows that the ground
state is spatially non-uniform for the constant solution when the
critical facet length b. > 7 /4, and the solution is unstable [21]. Sim-
ilarly, for the undriven Eq. (1) together with phase shift (3), the
ground state of the system is [29]

x <0,
x>0,

4tan~! exp(xp + X),
k —4tan~! exp(xy — x),

Yo(x,t) = { (6)
with xg = In(tank/8), describes fractional fluxon that is sponta-
neously generated at the point of discontinuity.

Here, we apply a perturbation technique together with
multiple-scale expansion and the method of averaging to develop
“average” equations representing the dynamics of long Josephson
junctions with phase shifts. The obtained equations are double
sine-Gordon equations that represent the slowly varying dynamics
over the fast oscillating ac-drive of the original considered equa-
tion. Similar average dynamics were obtained before by using a
“normal form” technique [22], where many canonical transforma-
tions to the Hamiltonian system are applied and convert “mean-
zero” to a higher order. Similarly, Fourier series along with asymp-
totic expansion was applied to split the phase ¥ into the sum of
slowly and fast-varying fragments and the coefficients were ob-
tained in the form of Bessel functions of the first kind [23,24]

a2a?(J(a1) — Jo(ar)) 4 a?f1(a1)

J1=Jo(ar) + (7)

4 Q@
. Ji(a) | defo(aNh(a) | aie?)i(ar)f(ar) (8)
h="% 3204 1604

with a; = —f/Q2. In this article, we use simple scaling parameters
to obtain the coefficients in simple explicit relations. A simple and
very useful analytical approach of the sine-Gordon equation can
also be seen, where the authors have derived the current-voltage
characteristics and study the fluxon dynamics in long Josephson
junctions driven by a spatially non-uniform bias current density
and flux flow oscillators with spatially inhomogeneous driving [25-
27].

For the non-zero amplitude (f#0), the critical facet length b,
and the critical bias current y. are analyzed for 0 — 7 — 0 and
0 — « junctions. We show that by increasing the amplitude of the

external fast varying drive, the critical facet length b. increases,
while the critical bias current y. decreases. This is another part
of the article. We also study the interaction of localized mode and
the fast oscillating ac-drive. We use the Euler-Lagrange approxima-
tions to discuss the localized modes in long Josephson junctions in
an infinite domain.

The present paper is organized as follow. In Sections 2 and 3,
we consider the fast oscillating ac-drives and presenting our an-
alytical approach to obtain the gradually-varying dynamics in the
form of "averaged” equations. We use asymptotic analysis together
with multi-scale expansions and the method of averaging to ob-
tain the average dynamics, which describe the double sine-Gordon
equation. In Sections 4 and 5, by considering the obtained averaged
equations, we examine analytically the critical facet length b, and
the value of an applied bias current y. for both the junctions. We
show that, the threshold distance in 0 — r — 0 junctions increases
by the fast external ac-drive, while the critical current decreases in
0 — k junctions. In Sections 6 and 7, we use a Euler-Lagrange ap-
proach to discuss the localized modes in long Josephson junctions.
Section 8 is dedicated to numerical simulation to confirm our ana-
lytical results and also compare our results with the existing liter-
ature. Finally Section 9 conclude the paper.

2. Averaging of sine-Gordon equation with a large driving
amplitude

In this section, we calculate an average nonlinear system that
illustrates the dynamics of Eq. (1). This system has been approxi-
mated before by using different approaches [23,24,28]. We use a
simple scaling f = h/e>?2, with h~ ©O(1). We consider a rapidly
oscillating ac-drive with a small parameter € = 1/Q%/3 « 1. As the
considered Eq. (1) depends both on the fast time-scale t = O(¢)
and t = O(1), so we define

n>-3. 9)
We further seek the asymptotic expansion in the form

V(X T)=Yo+€Yy+e' Y+ Y3+ (10)

where ¥ = ¥;(x.7_3,...) and 7_3 = /€32, Here 7_3 is assumed
to be a fast variable. Over the fast-time scale, it is also assumed
that the average

1 p
) =3 /O Yix. T3, )dT_3 = 0,

that is, y; for i € Z* are periodic in fast variable 7_3 with p =27.
The supposition considered above is productive because any ar-
bitrary r; which is independent of the fast variable 7_3 can be
merged in ¥y and so Y¥o(x, T_5,...) is known as the average of
Y (x, t). Plugging expansion (10) in Eq. (1), we obtain the following
hierarchy of equations

e 0(1/€%) DE3W0 =0, (12)

integrating twice, we obtain g = C;(7_3,...)T_3 + G (7_3,...). To
obtain Vg is independent of t_3, we take a simple choice of
Ci(1_3,...) = 0. Hence we conclude that ¥y = Yo(x, 7_3,...).

e O(1/€%%) D 9 +2D 3D 0 —hcos(t_3) =0. (13)

Simplifying and integrating twice, we obtain ¥;(x,7_3,...) =
—hcos(t_3), which shows that v is a function of fast time scale
7_3 and is independent of slow time scales t;,, ne€ Z, n > —2.

T, =€"’t, nez,

(11)

e O(1/€%) D233, +2D_3D oY1 + D2y +2D_3D_1%o =0, (14)

simplifying and averaging over the period p, we obtain the solvabil-
ity condition

D290 =0, (15)
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