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a b s t r a c t 

A long Josephson junction comprising regions with phase discontinuities driven by an external ac-drive 

is studied. An inhomogeneous sine-Gordon equation is used, that depicts the dynamics of long Joseph- 

son junctions with phase discontinuities. Perturbation technique along with asymptotic analysis and the 

method of averaging are applied to obtain an average dynamics in the form of double sine-Gordon equa- 

tions for both small and large driving amplitudes. From the obtained average dynamics, it is determined 

that, the external ac-drive may affect the presence of the ground state of the junction. Specifically, the 

cases for 0 − κ and 0 − π − 0 junctions are discussed. In the presence of an external ac-drive, the criti- 

cal facet length b c is analyzed for 0 − π − 0 junction above which the ground state is non-uniform. The 

critical bias current γ c for 0 − κ junction is investigated, at which the junction switches to a resistive 

state. Further, the interaction of localized defect modes and the fast oscillating drive is studied for both 

0 − κ and 0 − π − 0 junctions, which is explained by using Lagrangian approach. Numerical simulations 

are performed to support our analytical calculations. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

In the recent century, an impressive consideration has been 

given to the study of Josephson junctions. Josephson junctions are 

important solid-state tools on which experimental analysis can be 

carried out with relative clarity. In 1962, Brian Josephson predicted 

theoretically that, when two superconductors are brought close to- 

gether with a thin layer of an insulator in between them, electrons 

could ”tunnel;; through the non-superconducting barrier from the 

one superconductor to the other. It is due to the quantum mechan- 

ical waves in the two overlapped superconductors. The tunneling 

of electrons is called dc-Josephson effect and the device is named 

after its discovery as Josephson junction [1] . There have been many 

applications of Josephson junctions in several fields, for example, 

data-processing systems and microwave oscillators. The precise in- 

vestigation of Josephson junctions gives many facts on the stabil- 

ity of numerous physical systems, such as, ferromagnetic systems, 

charge-density waves and anti-ferromagnetic systems. 

If we represent a Josephson phase by ψ( x, t ) then I = 

I c sin ψ(x, t) is called current phase relation. A novel behaviour in 

Josephson junctions was first investigated by Bulaevskii et al. [2] . 

In experiments, it was observed that Josephson vortex transport- 

ing a fraction of magnetic flux quantum. This inconceivable phe- 
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nomenon could be performed by intrinsically constructing piece- 

wise fixed phase discontinuity �( x ). This transformed the super- 

current relation into I = I c sin (ψ + �) . Various experimental meth- 

ods are performed to create nonlinearity in the Josephson phase 

[3–5] . These include abrikosov vortex [6] , connection of magnetic 

impurities [7] , pair of injectors [8] and multi-layer junctions with 

control thickness over the ferromagnetic barrier [9–11] . Josephson 

junctions with phase discontinuity have promising applications in 

information processing and data storage [12,13] . 

In ideal long Josephson junctions, the phase difference ψ( x, t ) 

satisfies a sine-Gordon equation. The sine-Gordon equation arises 

extensively in the study of nonlinear systems, because of its mul- 

tisoliton solutions, solitary wave solutions and periodic solutions. 

The elementary nonlinear confined solutions of the sine-Gordon 

model can be separated into two main parts, that is, kink and 

breather . The ‘kink’ predicts the static and dynamic properties 

of localized excitations, while ‘breather’ has a solution that os- 

cillates in time and localized in space and has frequency lying 

under the linear band. The sine-Gordon model predicts different 

physical phenomena, that is, the oscillation of localized modes in 

plasma physics [14] , pattern configuration [15] , stochastic propaga- 

tion [16] and information transport in microtubules [17] . 

Here, we consider the spatially perturbed sine-Gordon equa- 

tion 

ψ tt − ψ xx + sin ( ψ + �) = γ + α ψ t + f cos ( � t ) , (1) 
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to study long Josephson junctions with ac-drive. Here ψ is the 

variance between the phases of the wave functions, γ is a value 

of bias current and α is a damping parameter. The constant f is 

the amplitude of oscillating ac-drive and � is driving frequency of 

the system. Because of the nondimensionalization of the temporal 

variable t , the Josephson plasma frequency corresponds to � = 1 . 

A theoretically relevant study of Eq. (1) for �< 1 has been ana- 

lyzed previously [18–20] . Here, we study an experimentally rele- 

vant case �� 1. The phase-shifts configurations �( x ) considered 

herein are 

�(x ) = 

{
π, | x | ≤ b, 

0 , | x | > b, 
(2) 

�(x ) = 

{
0 , x < 0 , 

κ, x > 0 , 
(3) 

which are known as 0 − π − 0 and 0 − κ junctions respectively. For 

physically meaningful solution, we use the continuity conditions 

ψ(±b + , 0) = ψ(±b −, 0) , ψ x (±b + , 0) = ψ x (±b −, 0) , (4) 

and 

ψ(±0 

−) = ψ(±0 

+ ) , ψ x (±0 

−) = ψ x (±0 

+ ) , (5) 

for 0 − π − 0 and 0 − κ junctions. The unperturbed sine-Gordon 

equation together with a phase shift (2) has a uniform ground state 

ψ 0 = 0 ( mod 2 π) . The stability analysis shows that the ground 

state is spatially non-uniform for the constant solution when the 

critical facet length b c > π /4, and the solution is unstable [21] . Sim- 

ilarly, for the undriven Eq. (1) together with phase shift (3) , the 

ground state of the system is [29] 

ψ 0 (x, t) = 

{
4 tan 

−1 exp ( x 0 + x ) , x < 0 , 

κ − 4 tan 

−1 exp ( x 0 − x ) , x > 0 , 
(6) 

with x 0 = ln ( tan κ/ 8 ) , describes fractional fluxon that is sponta- 

neously generated at the point of discontinuity. 

Here, we apply a perturbation technique together with 

multiple-scale expansion and the method of averaging to develop 

“average” equations representing the dynamics of long Josephson 

junctions with phase shifts. The obtained equations are double 

sine-Gordon equations that represent the slowly varying dynamics 

over the fast oscillating ac-drive of the original considered equa- 

tion. Similar average dynamics were obtained before by using a 

“normal form” technique [22] , where many canonical transforma- 

tions to the Hamiltonian system are applied and convert “mean- 

zero” to a higher order. Similarly, Fourier series along with asymp- 

totic expansion was applied to split the phase ψ into the sum of 

slowly and fast-varying fragments and the coefficients were ob- 

tained in the form of Bessel functions of the first kind [23,24] 

j 1 = J 0 ( a 1 ) + 

a 2 1 α
2 ( J 2 (a 1 ) − J 0 (a 1 ) ) 

4�2 
+ 

a 1 α
2 J 1 (a 1 ) 

�2 
, (7) 

j 2 = 

J 2 1 (a 1 ) 

�2 
+ 

a 2 1 α
2 J 0 (a 1 ) J 2 (a 1 ) 

32�4 
+ 

a 1 α
2 J 1 (a 1 ) J 2 (a 1 ) 

16�4 
, (8) 

with a 1 = − f/ �2 . In this article, we use simple scaling parameters 

to obtain the coefficients in simple explicit relations. A simple and 

very useful analytical approach of the sine-Gordon equation can 

also be seen, where the authors have derived the current-voltage 

characteristics and study the fluxon dynamics in long Josephson 

junctions driven by a spatially non-uniform bias current density 

and flux flow oscillators with spatially inhomogeneous driving [25–

27] . 

For the non-zero amplitude ( f � = 0), the critical facet length b c 
and the critical bias current γ c are analyzed for 0 − π − 0 and 

0 − κ junctions. We show that by increasing the amplitude of the 

external fast varying drive, the critical facet length b c increases, 

while the critical bias current γ c decreases. This is another part 

of the article. We also study the interaction of localized mode and 

the fast oscillating ac-drive. We use the Euler-Lagrange approxima- 

tions to discuss the localized modes in long Josephson junctions in 

an infinite domain. 

The present paper is organized as follow. In Sections 2 and 3 , 

we consider the fast oscillating ac-drives and presenting our an- 

alytical approach to obtain the gradually-varying dynamics in the 

form of ”averaged” equations. We use asymptotic analysis together 

with multi-scale expansions and the method of averaging to ob- 

tain the average dynamics, which describe the double sine-Gordon 

equation. In Sections 4 and 5 , by considering the obtained averaged 

equations, we examine analytically the critical facet length b c and 

the value of an applied bias current γ c for both the junctions. We 

show that, the threshold distance in 0 − π − 0 junctions increases 

by the fast external ac-drive, while the critical current decreases in 

0 − κ junctions. In Sections 6 and 7 , we use a Euler-Lagrange ap- 

proach to discuss the localized modes in long Josephson junctions. 

Section 8 is dedicated to numerical simulation to confirm our ana- 

lytical results and also compare our results with the existing liter- 

ature. Finally Section 9 conclude the paper. 

2. Averaging of sine-Gordon equation with a large driving 

amplitude 

In this section, we calculate an average nonlinear system that 

illustrates the dynamics of Eq. (1) . This system has been approxi- 

mated before by using different approaches [23,24,28] . We use a 

simple scaling f = h/ε5 / 2 , with h ∼ O(1) . We consider a rapidly 

oscillating ac-drive with a small parameter ε = 1 / �2 / 3 � 1 . As the 

considered Eq. (1) depends both on the fast time-scale t = O(ε) 

and t = O(1) , so we define 

τn = εn/ 2 t , n ∈ Z , n ≥ −3 . (9) 

We further seek the asymptotic expansion in the form 

ψ(x, τ ) = ψ 0 + ε1 / 2 ψ 1 + ε1 ψ 2 + ε3 / 2 ψ 3 + · · · , (10) 

where ψ j = ψ j (x, τ−3 , . . . ) and τ−3 = t/ε3 / 2 . Here τ−3 is assumed 

to be a fast variable. Over the fast-time scale, it is also assumed 

that the average 

〈 ψ i 〉 = 

1 

p 

∫ p 

0 

ψ i (x, τ−3 , . ) dτ−3 = 0 , (11) 

that is, ψ i for i ∈ Z 

+ are periodic in fast variable τ−3 with p = 2 π . 

The supposition considered above is productive because any ar- 

bitrary ψ i which is independent of the fast variable τ−3 can be 

merged in ψ 0 and so ψ 0 (x, τ−2 , . . . ) is known as the average of 

ψ( x, t ). Plugging expansion (10) in Eq. (1) , we obtain the following 

hierarchy of equations 

• O ( 1 /ε3 ) D 

2 
−3 ψ 0 = 0 , (12) 

integrating twice, we obtain ψ 0 = C 1 (τ−2 , . . . ) τ−3 + C 2 (τ−2 , . . . ) . To 

obtain ψ 0 is independent of τ−3 , we take a simple choice of 

C 1 (τ−2 , . . . ) = 0 . Hence we conclude that ψ 0 = ψ 0 (x, τ−2 , . . . ) . 

• O ( 1 /ε5 / 2 ) D 

2 
−3 ψ 1 + 2 D −3 D −2 ψ 0 − h cos (τ−3 ) = 0 . (13) 

Simplifying and integrating twice, we obtain ψ 1 (x, τ−3 , . . . ) = 

−h cos (τ−3 ) , which shows that ψ 1 is a function of fast time scale 
τ−3 and is independent of slow time scales τn , n ∈ Z , n ≥ −2 . 

• O ( 1 /ε2 ) D 

2 
−3 ψ 2 + 2 D −3 D −2 ψ 1 + D 

2 
−2 ψ 0 + 2 D −3 D −1 ψ 0 = 0 , (14) 

simplifying and averaging over the period p , we obtain the solvabil- 

ity condition 

D 

2 
−2 ψ 0 = 0 , (15) 
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