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a b s t r a c t 

Recently, the synchronization on multi-layer networks has drawn a lot of attention. In this work, we 

study the stability of complete synchronization on duplex networks. We first numerically investigate the 

effects of coupling functions on complete synchronization on duplex networks. Then, we propose two 

approximation methods to deal with the stability of complete synchronization on duplex networks. In 

the first method, we introduce a modified master stability function and, in the second method, we only 

take into consideration the contributions of a few most unstable transverse modes to the stability of 

complete synchronization. We find that both methods work well for predicting the stability of complete 

synchronization for small networks. For large networks, the second method still works pretty well. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Network science has provided a fertile ground for understand- 

ing complex systems. The traditional network approach treats com- 

plex systems as monolayer networks by charting an elementary 

unit into a network node and representing each unit-unit inter- 

action on an equivalent footing as a network link. [1–7] . Recently, 

it has become clear that structures of many complex systems in 

social, biological, technological systems should not be treated as 

monolayer networks but multi-layer ones [8–17] . There are dif- 

ferent types of multi-layer networks, such as networks of net- 

works, interacting networks, multiplex networks. Consider a group 

of members, in which every member may interact with the oth- 

ers through different channels such as Twitter, blog, Facebook, and 

Wechat. The social network formed by these members is a typi- 

cal example of multiplex networks, in which different interaction 

channels are represented as different layers. Following the termi- 

nology in the Refs. [17–20] , a multiplex network consists of several 

layers, each of them characterized by a distinct interaction channel, 

and all layers share the same nodes. 

Synchronization, one of the most interesting collective behav- 

iors, has been investigated since the dawn of natural science [5,21–

24] . There are different types of synchronization on monolayer net- 

works or multi-layer networks [17] , such as complete synchroniza- 

tion (CS) [5] , phase synchronization [25] , lag synchronization [26] , 

general synchronization [27] , cluster synchronization [28] , partial 
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synchronization [29] , and remote synchronization [30] . Among all 

types of synchronization, CS where the states of all oscillators 

are identical is the simplest one [31] . CS on monolayer networks 

may be well studied by using the master stability function (MSF) 

method [32,33] . The MSF method shows that the stability of CS is 

affected by coupling functions (CFs) and network structures. 

Recently, much attention has been paid to synchronization on 

multi-layer networks [15,34–37] , especially on multiplex networks 

[16,38] . Aguirre et al. have shown that connecting the high-degree 

(or low-degree) nodes in different layers turns out to be the most 

(or the least) effective strategy to achieve synchronization in inter- 

acting networks [15] . Using the MSF method, Sorrentino et al. have 

studied CS on duplex networks when the two layers are subject 

to constrains such as commuting Laplacians, unweighted and fully 

connected layers, and nondiffusive coupling [16] . Genio et al. have 

provided a full mathematical framework to evaluate the stability 

of CS on multiplex networks by generalizing the MSF method [38] . 

However, N − 1 transverse modes are coupled in their framework 

and the stability of CS is hard to deal with for a large N . We are 

thus motivated to reduce the stability analysis of CS on multiplex 

networks to a lower-dimensional problem by developing some ap- 

proximation methods. 

In this work, we study the coupled identical chaotic oscillators 

on duplex networks, specific multiplex networks with only two 

layers. We develop two approximation methods to deal with the 

stability of CS on duplex networks. In the first method, we assume 

that all transverse modes to synchronous chaos have the same con- 

tribution to the stability of CS. Then we obtain a modified MSF 

similar to the MSF on monolayer networks. In the second approx- 
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imation, we only consider the contributions from a few most un- 

stable transverse modes of layers, which are responsible for the 

desynchronization on each isolated layer, to the stability of CS. The 

stability diagrams of CS on duplex networks produced by the two 

approximation methods are compared with the results acquired by 

calculating the synchronization error in coupled chaotic oscillators. 

We find that the second approximation method provides better 

prediction on the stability of CS when N is large. 

2. The model 

We consider N oscillators whose time evolutions are governed 

by 

˙ x i = F (x i ) + 

N ∑ 

j=1 

[ ε (1) L (1) 
i, j 

H 

(1) (x j ) + ε (2) L (2) 
i, j 

H 

(2) (x j )] , (1) 

where x i is the m -dimensional state variable of oscillator i , F ( x ) is 

the dynamics of an individual oscillator. These oscillators interact 

with each other through two different channels, each representing 

a different layer. To be specific, in layer 1 (or layer 2), oscillators 

interact with each other through the linear CF H 

(1) (or H 

(2) ), deter- 

mining the output signal from a node on layer 1 (or layer 2), with 

the coupling strength ε (1) (or ε (2) ). L (1) (or L (2) ) is the Laplacian 

matrix characterizing the topology of layer 1 (or layer 2), with el- 

ements L (1) 
i,i 

= −k (1) 
i 

(or L (2) 
i,i 

= −k (2) 
i 

), the degree of node i on layer 

1 (or layer 2), L (1) 
i, j 

= 1 (or L (2) 
i, j 

= 1 ) if node i and node j are con- 

nected with a link on layer 1 (or layer 2), and L (1) 
i, j 

= 0 (or L (2) 
i, j 

= 0 ) 

otherwise. In other words, we are considering N oscillators sitting 

on a duplex network. 

We briefly review the MSF method on the stability analysis of 

CS on monolayer networks 

˙ x i = F (x i ) + ε 
N ∑ 

j=1 

L i, j H(x j ) (2) 

The variational equations of Eq. (2) with respect to CS, ( x 1 = x 2 = 

· · · = x N = s ), are diagonalized into N decoupled eigenmodes of the 

form 

˙ ηi = [ DF (s ) + ελi DH(s )] ηi (3) 

where λi ( i = 1 , 2 , . . . , N) are eigenvalues of the Laplacian matrix 

L and Lφi = λi φi . For an undirected network, where L is symmet- 

ric, λi are real and can be sorted in descending order, i.e., 0 = 

λ1 > λ2 ≥ . . . ≥ λN . The eigenmode φ1 with λ1 = 0 accounts for 

the synchronous mode and other φi (i = 2 , 3 , . . . , N) are transverse 

modes. D F (s ) and D H(s ) are the m × m Jacobian matrices of the 

corresponding vector functions evaluated at CS. Letting σ = ελ, the 

largest Lypunov exponent (LLE) �( σ ), determined by Eq. (3) , is the 

so-called MSF. Generally, �( σ ) is negative when σ 1 < σ < σ 2 . CS 

is stable when all transverse eigenmodes with i > 1 have negative 

LLE, which requires, σ 1 < ελi < σ 2 for any i > 1. For a given node 

dynamics, CF can be categorized according to σ 1 and σ 2 . There 

are three types of CF [3,39] . For type-i CFs, σ1 = ∞ and CS is al- 

ways unstable. For type-ii CFs, σ2 = ∞ and CS is stable provided 

that ε > σ / λ2 . For type-iii CFs, both σ 1 and σ 2 are finite and CS is 

stable when σ 1 / λ2 < ε < σ 2 / λN . 

In the following, we take chaotic Lorenz oscillator ( m = 3 ) as 

the node dynamics, which is described as F (x ) = [10(y − x ) , 28 x −
y − xz, xy − z] T . We concern with CFs whose Jacobian matrices have 

only one nonzero element and we denote them with their nonzero 

elements. Thereby, there are 9 different CFs. Fig. 1 shows the LLE, 

�( σ ), for 9 different CFs. The type of the CF in each plot is marked 

by the index in the top-right corner. 

Fig. 1. The largest Lyapunov exponent � (in red) against σ for coupled Lorenz os- 

cillators on monolayer networks for different CFs. (a) DH 1 , 1 , (b) DH 1 , 2 , (c) DH 1 , 3 , 

(d) DH 2 , 1 , (e) DH 2 , 2 , (f) DH 2 , 3 , (g) DH 3 , 1 , (h) DH 3 , 2 , and (i) DH 3 , 3 . The index in the 

top-right corner in each plot denotes the type of the corresponding CF. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

3. Numerical simulations 

In this section, we numerically investigate the dependence of 

CS on CFs in coupled Lorenz oscillators on duplex networks with 

N = 6 . Both layers of duplex networks are modeled by random 

networks. We have tried different realizations of duplex networks 

and found qualitatively similar results. Without loss of general- 

ity, we consider a specific duplex network with the Laplacians, 

L (1) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−2 1 0 0 0 1 

1 −3 1 1 0 0 

0 1 −4 1 1 1 

0 1 1 −3 0 1 

0 0 1 0 −2 1 

1 0 1 1 1 −4 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

and 

L (2) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−3 0 1 0 1 1 

0 −2 0 0 1 1 

1 0 −3 0 1 1 

0 0 0 −1 1 0 

1 1 1 1 −5 1 

1 1 1 0 1 −4 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. We consider the syn- 

chronization error, which is defined as 

� = 

2 

N(N − 1) 

N ∑ 

i =1 , j>i 

〈|| � x j − �
 x i || 2 〉 t , (4) 

where 〈·〉 t means the time average and || � x j − �
 x i || 2 is the Euclidean 

norm ( || � x j − �
 x i || 2 = [(x j − x i ) 

2 + (y j − y i ) 
2 + (z j − z i ) 

2 ] 1 / 2 ). In each 

simulation, the synchronization error is averaged over 400 time 

units after a transient time around 20 0 0 time units. When � < 

10 −6 , we say that the coupled Lorenz oscillators are completely 

synchronized. 

Fig. 1 shows the existence of all three types of CFs for Lorenz 

oscillators on monolayer networks. Consider coupled Lorenz oscil- 

lators on duplex networks in which two layers may take different 

types of CFs. There are 9 typical combinations of CFs. Then we nu- 

merically explore stable CS on the plane of ε(1) and ε(2) and inves- 

tigate effects of combinations of different types of CFs on CS. The 

results are presented in Fig. 2 , where the combinations of CFs are 

labeled in each plot, for example (i–iii) indicating a type-i CF on 

layer 1 and a type-ii CF on layer 2. 

The results can be summarized as follows. First, the presence of 

the type-i CFs always disfavors CS. When both layers take type- 

i CFs, it is impossible to realize CS [see Fig. 2 (a)]. As shown in 
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