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a b s t r a c t 

Studying attack strategy of complex networks is the basis of investigating network characteristics such 

as robustness, invulnerability, and network security. Knowing means of attack can help us take more 

effective measures to ensure network security. Presently, most research conclusions focus on a single 

vertex being attacked, and the choice of a set of attack nodes is also limited to a complete understanding 

of network information. In this paper, considering the effect of cascading failure, we focus on the multi- 

node attack strategy. Our results showed that the distance between attack targets has a great effect on 

the attacking effect. Taking both the average avalanche scale and maximum destruction size into account, 

when the distance between attack targets was 2, the network suffered the most serious damage. If the 

information about the network was unclear, we presented 3 kinds of conditional attack strategies. Under 

the condition of different tolerance coefficients and different degrees of known information, each strategy 

had its own unique advantages. In conclusion, the research in this paper supports the easy and quick 

selection of attack targets under the condition of incomplete information. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Complex networks arise in natural systems and are an essen- 

tial part of modern society. They have caught the attention of 

many scholars [1] , and seen specific application in many fields, 

such as the sociology of information dissemination, spreading of 

rumors [2,3] , the biology of virus infection [4,5] , interactions be- 

tween proteins [6] , urban subway planning, and reasonable parti- 

tioning of bus systems [7,8] . Complex networks can abstract com- 

ponents in complex systems into corresponding nodes and edges, 

which express the relationship between nodes, and then we can 

study optimal network design [9,10] and network security issues 

[11,12] through topological structure [13] and network dynamics. If 

we want to ensure network security and reliability, first of all, we 

must clearly understand how the network may be attacked. Since 

different network structures may have different results under dif- 

ferent means of attack [14] , we can allocate limited resources to 

where it is most needed by understanding how the networks will 

fail. Originating from studies of complex networks vulnerability, Al- 

bert et al. [15] was the first to pay close attention to the relation- 

ship between topological network structure and network invulner- 

ability. Until now, there were 3 main kinds of attack modes: (1) 

Random attack, where nothing about the network is known, and 

we do not have the ability to distinguish which nodes or edges are 
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more important; therefore, each node has the same probability of 

being attacked. (2) Intentional attack, where we fully understand 

the network and can choose the most important nodes or edges to 

remove (which may otherwise cause great damage). The research 

of Holme et al. [16] was relatively comprehensive, as they divided 

attack strategies into 4 types by defining the following strategies: 

removals by descending order of link degrees and betweenness 

centrality, calculated for either the initial network or current net- 

work during the removal procedure. Results showed that removals 

by the recalculated degrees and betweenness centrality were often 

more harmful. In the study of vital nodes identification [17] , vital 

nodes identified by connection-sensitive [18] and stability-sensitive 

[19] criteria also provided an idea for the selection of attack tar- 

gets, and a better attack effect was usually obtained. (3) Condi- 

tional attack, of which random and intentional attacks are 2 ex- 

treme cases and are rare in reality, means that one can preferen- 

tially attack only the most important vertex (edge) among a lo- 

cal region of a network. Gallos et al. [20] studied the stability and 

topology of scale-free networks under attack and defense strate- 

gies, they regard incomplete information as uncertain information, 

which meaning that one can obtain the information of all nodes 

but that information may be uncertain. Wu et al. [21] obtained at- 

tack information using probability sampling without return, with 

indicators α and β to describe the attack information. 

The aforementioned attack strategies are limited to static net- 

work and do not consider network breakdown caused by cascad- 
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ing failure [22–24] , such as the power network failure in southern 

China in 2008, Internet congestion, the pipeline explosion in Qing- 

dao, and so on. These accidents have shown that a small initial at- 

tack or failure has the potential to trigger a global cascade. In 2002, 

Motter and Lai [25] established a linear model about capacity and 

initial load (ML model). Since then, some scholars further pre- 

sented varieties of a nonlinear load-capacity model [26,27] . Chen 

et al. [28] proposed a local-capacity optimal relationship model, 

where they defined node redundant capacity as a maximum re- 

distribution load from a single neighbor failure node. Additionally, 

Wang [29] proposed a partial protection strategy, where the ver- 

tex could invoke redundant capacity from its neighbor nodes to 

share a redistribution load and greatly reduce the capacity thresh- 

old. The best network structure and optimal parameter configura- 

tions aimed at reducing the impact of cascading failure addresses 

failure caused by a single vertex under attack [22–30] . However, 

in real life, there are often multiple nodes under attack simulta- 

neously. In this case, what kind of network design is more sta- 

ble? Precise knowledge of self and precise knowledge of the threat 

leads to victory. Till far, many studies have investigated the influ- 

ence maximization problem (IMP) [17] , where a set of vital nodes 

could be determined as causing the greatest damage, no mat- 

ter determined by the topology, mechanisms, or dynamical pro- 

cesses [31,32] . Many advanced algorithms have also been proposed 

to find the most influential group of nodes, such as greedy algo- 

rithms [32] and heuristic algorithms [33] . However, the realization 

of these methods has a basic premise: since the network is com- 

pletely known, especially for the algorithm, they test one by one 

to find the best combination. Hu et al. [34] have demonstrated a 

very fundamental and exciting result, that is, a node’s or a group 

of nodes’ global influence can be exactly measured by using purely 

local network information. However, the local network informa- 

tion is specially selected from the global information, there are 

strict limits on connectivity and component size. As the enemy, we 

can usually obtain only part of the network information, even the 

known structure of network is disconnected. If we cannot accu- 

rately calculate the impact of the removal of nodes on the network, 

perhaps we can narrow down the range of options with some char- 

acteristics. For example, whether the destruction of a focused at- 

tack is more serious than a dispersed attack? Therefore, through 

considering such issues, in this paper we studied cascading failure 

caused by multi-node attack. We aimed to find some rules that 

could aid us in limited information conditions when determining 

the targets that could cause more serious damage. We hope that 

our study of multi-node attack strategy can be helpful to network 

security. 

The remainder of this paper is organized as follows: in 

Section 2 , we study the characteristics of multi-node attack, 

and determine the impact of distance between attack targets; in 

Section 3 we propose 3 kinds of attack strategies under incom- 

plete network information, and conduct analysis of application 

scopes; finally, some summaries and conclusions are presented in 

Section 4 . 

2. Characteristics of multi-node attack 

2.1. Modeling and parameter selection 

The classical load-capacity model was established by Motter 

and Lai in 2002 [25] , but it is difficult to apply to large-scale net- 

works due to the large amount of calculations. Wang et al. [30] de- 

fined a new model, where the initial load of the node i is cor- 

related with its link degree k as L i = k θ
i 

, the load-capacity linear 

model is C i = T × L i , and the expression of load local preferential 

Fig. 1. Average avalanche scale as a function of tolerance coefficient for several val- 

ues of θon BA scale-free networks, under the condition of single vertex removal 

(dotted line) and two nodes removal (solid line). Each curve was obtained by aver- 

aging over experiments on 20 independent networks. 

redistribution rule is as follows: 

�L i j = L i 
L j ∑ 

n ∈ �i 

L n 
, (1) 

where �i is set of nodes adjacent to failure node i, θ is the load 

parameter, and T is the tolerance coefficient. 

Tolerance coefficient determines whether there is a cascading 

failure phenomenon, which can be completely avoided when T is 

sufficiently large. However, in reality, T is limited by cost con- 

straints, and much work has been done to prove the case that, with 

a load coefficient θ = 1 , the network has the strongest robustness 

under the same T when only a single vertex is attacked [30] . There- 

fore, we are interested in whether there is a similar phenomenon 

under the condition of multi-node attack. Here, we simulated the 

case that only two nodes were initial failure nodes, and built a BA 

scale-free network [35] with total number of nodes N = 10 0 0 and 

average connectivity degree 〈 k 〉 ≈ 4. We initially deactivated two 

nodes simultaneously and calculated avalanche sizes S i , which is 

the total number of broken nodes induced by initial failure nodes 

after cascading failure. We adopted the average avalanche scale 

S = 

M ∑ 

i =1 

S i /M , obtained via summation over all avalanche sizes, by 

deactivating a couple of nodes at each time, divided by the to- 

tal number of couples M = C 2 
N 

. According to the attack types, we 

obtained 6 curves with increasing T and under the situations of 

θ = 0 . 3 , θ = 1 , and θ= 1 . 6 . 

Fig. 1 shows that multi-node attack had the same trend as 

when a single vertex was attacked, and when θ = 1 , the network 

had the strongest robustness against cascading failure. To clarify 

this observed phenomenon, we now provide some theoretical anal- 

ysis. If a set of nodes fails simultaneously, and no cascading failure 

occurs, the following condition should be satisfied: 

�L il + · · · + �L jl + L l < C l , (2) 

where node i and j are the failure nodes, and node l is the object 

that impacted by redistribution load. 

According to the attack mode, the analysis is divided into 2 dif- 

ferent situations: 

(1) Focused attack (the distance among initial failure nodes sat- 

isfies d = 1 ). The adjacent nodes suffer from the redistribu- 

tion load of multiple failure nodes. 

Assuming that the number of initial failure nodes is q , node l 

inherits the redistribution load. Combining Eqs. (1) and (2) , 
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