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a b s t r a c t 

The present paper uses a relatively new approach and methodology to solve one and two dimensional 

nonlinear Schrödinger equations numerically. We use the horizontal method of lines and θ-method, 

θ ∈ [1/2, 1] for time discretization that reduces the problem into an amenable system of ordinary dif- 

ferential equations. The resulting system of ODEs in space subsequently have been solved by quintic 

polynomial spline scheme. Convergence of the scheme in maximum norm is established rigorously. The 

convergence orders are O(k + h 4 x + h 4 y ) and O(k 2 + h 4 x + h 4 y ) , where k is the temporal grid size and h x and 

h y are spatial grid sizes, respectively. Matrix stability analysis shows that the method is conditionally 

stable. The efficacy of proposed approach has been confirmed with four numerical experiments, where 

comparison is made with some earlier works. It is clear that the results obtained are acceptable and are 

in good agreement with earlier studies. The present scheme is very simple, effective and convenient for 

obtaining numerical solution of Schrödinger equation. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In mathematics and physics, nonlinear partial differential equa- 

tions are partial differential equations with nonlinear terms. The 

nonlinear Schrödinger equation appears more and more frequently 

in many mathematical physics applications. Various physical phe- 

nomena in the fields of hydrodynamics, nonlinear optic, self- 

focusing in laser pulses, thermodynamic processes in meso scale 

systems, propagation of heat pulses in crystals, helical motion of 

very thin vortex filaments, models of protein dynamics, magnetic 

thin films, description of the dynamics of Bose-Einstein condensate 

at extremely low temperature, models of energy transfer in molec- 

ular systems and plasma are successfully described by nonlinear 

Schrödinger equations (see [1–17] ). 

In this article, we will develop an approximation based on ex- 

ponential spline to obtain numerical solution of the following gen- 

eralized nonlinear Schrödinger equation with variable coefficients: 

ı 
∂u 

∂t 
+ A (x, y, t) 

(
∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂y 2 

)
+ B (x, y, t) u + C(x, y, t)�(| u | 2 ) u = 0 , 

(1.1) 
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(x, y, t) ∈ � × [0 , T ] , � ⊂ R 

d , d = 1 , 2 , 

with the initial condition 

u (x, y, 0) = φ(x, y ) , (x, y, z) ∈ �, (1.2) 

and the boundary conditions 

u (x, y, t) = f (x, y, t) , (x, y, t) ∈ ∂�, t ∈ (0 , T ] , (1.3) 

where � = [ L x , R x ] × [ L y , R y ] is a two-dimensional rectangle do- 

main, (0, T ] is the time interval, ı = 

√ −1 is the complex unit, A ( x, 

y, t ) and B ( x, y, t ) are bounded real functions, � is a given real- 

valued function, ∂� is the boundary of �, φ, f are given suf- 

ficiently smooth functions, C ( x, y, t ) is the arbitrary real-valued 

potential function, u ( x, y, t ) is an unknown complex-valued wave 

function which describes the motion of soliton(s) [18] . When � = 

0 , Eq. (1.1) is the linear Schrödinger equation, which is studied 

extensively in the literature [19–28] . When �(| u | 2 ) = | u | 2 , then 

Eq. (1.1) is the cubic NLSE [18,29–38] . 

The nonlinear Schrödinger Eq. (1.1) conserves many quantities. 

Among them, the mass (or wave energy in nonlinear optics) and 

energy (or Hamiltonian in nonlinear optics) conservation are given 

as: 
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M (t) = 

∫ 
R d 

| u (x, y, t) | 2 dx = 

∫ 
R d 

| u (x, y, 0) | 2 dx = M (0) , ∀ t > 0 . 

(1.4) 

If A ( x, y, t ), B ( x, y, t ) and C ( x, y, t ) are independent of t (i.e. A ( x, y, 

t ) ≡ A and C ( x, y, t ) ≡ C ) then 

E (t) = 

∫ 
R d 

(
A | u x (x, y, t) + u y (x, y, t) | 2 − C(x, y ) | u (x, y, t) | 2 

− C 

2 

| u (x, y, t) | 4 
)

dx 

= 

∫ 
R d 

(
A | u x (x, y, 0) + u y (x, y, 0) | 2 − C(x, y ) | u (x, y, 0) | 2 

− C 

2 

| u (x, y, 0) | 4 
)

dx (1.5) 

= E (0) , t > 0 . 

As everyone knows, most differential equations cannot be 

solved analytically. Developing efficient numerical methods for 

solving differential equations, especially partial differential equa- 

tions, is necessary and important. A great deal of research on 

the numerical solution of partial differential equation has been 

done. Due to the wide applications of the Schrödinger equations, 

performing efficient and accurate numerical simulations for the 

Schrödinger equations plays an essential role in many real applica- 

tions. For the linear Schrödinger equation, there are a lot of numer- 

ical studies in the literature [19–28] . We will not describe these 

literature in details since we will focus on the numerical study for 

the generalized NLSE (1.1) in this paper. For cubic NLSE, numerical 

studies were also reported extensively in the literature [29–55] . 

For example, Dehghan and Mirzaei [22] proposed a mesh- 

less local boundary integral equation (LBIE) method to solve the 

unsteady two-dimensional Schrödinger equation. Dehghan and 

Emami–Naeini [24] illustrated the application of Sinc-collocation 

and Sinc–Galerkin methods to the approximate solution of the 

two-dimensional time dependent Schrödinger equation with non- 

homogeneous boundary conditions. The alternating direction im- 

plicit compact finite difference schemes are devised for the numer- 

ical solution of two-dimensional Schrödinger equations by Gao and 

Xie [28] . Li et al. [33] studied the one-dimensional cubic NLSE with 

wave operator by the compact finite difference method. Wang et al. 

[35] proposed a fourth-order compact and energy conservative dif- 

ference scheme for the two-dimensional cubic NLSE with periodic 

boundary conditions. In addition, based on the standard fourth- 

order compact finite difference method, i.e., fourth-order Pade ap- 

proximations for the second derivative, Xu and Zhang [36] pro- 

posed two unconditionally stable ADI methods with spatial fourth- 

order accuracy and temporal second-order accuracy to solve the 

two-dimensional cubic NLSE. Based on the combined compact dif- 

ference scheme, an alternating direction implicit method is pro- 

posed for solving two-dimensional cubic nonlinear Schrödinger 

equations by Li et al. [38] . The proposed method was sixth-order 

accurate in space and second-order accurate in time. El-Danaf 

et al. [45] were concerned with the problem of applying cubic 

non-polynomial spline functions to develop a numerical method 

for obtaining approximation for the solution for cubic non-linear 

Schrödinger equation. Lin [46,47] presented numerical methods 

based on parametric cubic and septic splines for solving the cubic 

nonlinear Schrödinger equation. Mohammadi [48] implemented 

the exponential spline scheme to find a numerical solution of the 

nonlinear Schrödinger equations with constant and variable coeffi- 

cients. Two-dimensional Schrödinger equations are solved via dif- 

ferential quadrature method by Golbabai and Nikpour [49] . Rong- 

pei Zhang et al. [51] presented a conservative Fourier spectral 

collocation (FSC) method to solve the two-dimensional nonlin- 

ear Schrödinger (NLS) equation. An effective differential quadra- 

ture method (DQM) which is based on modified cubic B- spline 

(MCB) has been implemented to obtain the numerical solutions 

for the nonlinear Schrödinger (NLS) equation by Bashan et al. [53] . 

Dehghan and Mohammadi [54] applied the RBF-FD technique for 

the nonlinear Schrödinger equation in two and three dimensions. 

Zhang et al. [55–57] proposed the Ritz methods to predict numeri- 

cal solutions for the two-dimensional nonlinear Schrödinger, three- 

dimensional wave and generalized regularized long wave equa- 

tions. 

The purpose of this paper is to give a new spline method 

that is based on a quintic polynomial spline function of the form ∑ 5 
i =0 c i x 

i to develop numerical methods for obtaining smooth ap- 

proximations for the solution of the problem (1.1) –(1.3) . According 

to Larry [58] the space T 5 = span { 1 , x, x 2 , . . . , x 5 } generates an ex- 

tended complete Chebyshev space on �. 

This approach has its own advantages in comparison with finite 

difference methods. For exam ple, once the solution has been com- 

puted, the information needed for spline interpolation between 

mesh points is available. This is important when the solution of the 

boundary value problem is required at different locations in inter- 

val �. This approach has added advantage that it not only provides 

continuous approximations to u ( x, y, t ), but also for its derivatives 

at every point of the range of integration. We give the truncation 

error of the method and convergence analysis. The analysis will be 

illustrated by investigating some examples. The numerical simula- 

tions validate and demonstrate the advantages of the method. 

A brief outline of the remainder of the paper is as follows. In 

Section 2 , the quintic polynomial spline formulation is derived for 

the numerical solution of Eq. (1.1) in space directions. Also, we de- 

rive the needed boundary formulas in this section. In Section 3 , 

we present the formulation of our method. The convergence anal- 

ysis of presented method is discussed in Section 4 . Moreover in 

Section 5 , the stability of the proposed numerical method is in- 

vestigated. In Section 6 , we present results of numerical experi- 

ments demonstrating the expected global accuracy of the method 

and its efficacy on several test problems from the literature. The 

paper ends with some concluding remarks and a brief discussion 

in Section 7 . 

2. Quintic polynomial spline functions 

The solution domain, � = { (x, y, t) ; L x ≤ x ≤ R x , L y ≤ y ≤ R y , t > 

0 } , is divided to N s × N s × N t mesh. The grid points are ( x i , y l , t j ), 

where x i = L x + ih x ; h x = 

R x −L x 
N s 

, i = 0 , 1 , . . . , N s , y l = L y + lh y ; h y = 

R y −L y 
N s 

, l = 0 , 1 , . . . , N s and t j = jk ; k = 

T 
N t 

, j = 0 , 1 , 2 , . . . , N t , N s and 

N t are positive integers. 

Let S 
j 

(1) i,l 
be an approximation to u 

j 

i,l 
= u (x i , y l , t j ) , obtained by 

the segment S (1) i ( x, y l , t j ) of the quintic polynomial spline functions 

S (1) i ( x, y l , t j ) ∈ C 4 [ L x , R x ] passing through the points (x i +1 , y l , t j ) and 

( x i , y l , t j ) and is defined by 

S (1) i (x, y l , t j ) = 

5 ∑ 

r=0 

a (r) 
i 

(y l , t j )(x − x i ) 
r , i = 0 , 1 , . . . , N s , (2.1) 

where a (0) 
i 

(y l , t j ) , a 
(1) 
i 

(y l , t j ) , a 
(2) 
i 

(y l , t j ) , a 
(3) 
i 

(y l , t j ) , a 
(4) 
i 

(y l , t j ) and 

a (5) 
i 

(y l , t j ) are unknown coefficients. 

Also, let S 
j 

(2) i,l 
be an approximation to u 

j 

i,l 
= u (x i , y l , t j ) , ob- 

tained by the segment S (2) l ( x i , y, t j ) of the quintic polynomial 

spline functions S (2) l ( x i , y, t j ) ∈ C 4 [ L y , R y ] passing through the points 

(x i , y l+1 , t j ) and ( x i , y l , t j ) and is defined by 

S (2) l (x i , y, t j ) = 

5 ∑ 

r=0 

a ∗(r) 
l 

(x i , t j )(y − y l ) 
r , l = 0 , 1 , . . . , N s , (2.2) 
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