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In ecological modeling, seasonality can be represented as an alternation between environmental condi- 

tions. This concept of alternation holds common ground between ecologists and chemists, who design 

time-dependent settings for chemical reactors to influence the yield of a desired product. In this study 

and for a variety of maps, we consider a switching strategy that alternates between two undesirable 

dynamics that yields a stable desirable dynamic behavior. By comparing bifurcation diagrams of a map 

and its alternate version, we can easily find parameter values, which, on their own, yield chaotic orbits. 

When alternated, however, the parameter values yield a stable periodic orbit. Our analysis of the two- 

dimensional (2-D) maps is an extension of our previous work with one-dimensional (1-D) maps. In the 

case of 2-D maps, we consider the Beddington, Free, and Lawton and Udwadia and Raju maps. For these 

2-D maps, we not only show that we can find “chaotic” parameters for the so-called “chaos” + “chaos” = 

“periodic” case, but we find two new “desirable” dynamic situations: “quasiperiodic” + “quasiperiodic” = 

“periodic” and “chaos” + “chaos” = “periodic coexistence.” In the former case, the alternation of chaotic 

dynamics yield two different periodic stable orbits implying the coexistence of attractors. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Over the years, theoretical ecologists have modeled population 

dynamics using either discrete or continuous equation methods 

[1–8] . In the former case, maps have been the method of choice 

[1–6] . In particular, the logistic map has played a central role in 

the development and understanding of complex dynamic systems. 

The logistic map was originally used to study populations of non- 

overlapping generations, and is represented by the following re- 

lation between the new generation ( X n +1 ) and the old generation 

( X n ). 

Independently of ecological studies, alternate dynamics strate- 

gies have been the center of attention of theoretical analyses due 

to the so-called Parrondo’s paradox, where two losing games can 

be combined to yield a winning game [9,10] . For more details of 

Parrondo’s paradox and applications, we refer our readers to pa- 

pers by Parrondo and co-workers [10–16] . In particular, a paper 

by Abbott [16] summarizes 10 years of Parrondo’s paradox. Further- 

more, the idea that “lose” + “lose” = “win” has been extended 
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to “chaos” + “chaos” = “periodic” in one-dimensional (1-D) maps 

[17–19] . For the logistic map, we have considered the case where 

the alternation of undesirable dynamical behaviors yields a desir- 

able behavior in the context of seasonality, where we alternated 

the parameter values between even and odd iterations. In an ex- 

tension of the so-called Parrondian games, we analyzed the dy- 

namics of the 1-D logistic map, where we represented two seasons 

by alternating two relevant parameter values. For example, the al- 

ternation between a parameter that would drive the logistic map 

to extinction and a parameter that would drive the logistic map 

to chaos yielded stable oscillations. In the context of population 

dynamics, we have considered cases where “undesirable” + “un- 

desirable” = “desirable” dynamical behaviors occur as a result of a 

simple alternation of parameters [20–23] . 

In general, the search for “undesirable” parameter values has 

thus far been limited to 1-D maps [17–23] . Here, for the first time, 

we analyze two-dimensional (2-D) maps and show that bifurca- 

tion diagrams allow us to find intervals of parameter values that, 

when used individually, yield chaotic dynamics and, when alter- 

nated, yield periodic orbits. 

In our present discussion, we extend our modeling strategy to a 

couple of 2-D ecologically relevant maps and find that the “chaos”

+ “chaos” = “periodic” behaviors are not unique to 1-D maps [20–
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Fig. 1. Bifurcation diagrams for the Ricker model for two parameter ranges: 

r ∈ [0, 5]. 

23] . In Section 2 , we consider a modified Beddington, Free, and 

Lawton (BFL) map and, in Section 3 , a system of two coupled 

Ricker maps. Finally, in Section 4 , we discuss and summarize our 

results. 

2. BFL model 

In this section we analyze the BFL model, [24] that is a modi- 

fied Nicholson–Bailey (NB) model [25] used to model the discrete 

dynamics of host ( X )–parasitoid ( Y ) interactions. In particular, the 

model modifies the host’s linear term in the NB model by a Ricker- 

type exponential dependency [26] . Therefore, we have a 2-D two- 

parameter map, given by the following equations: 

x n +1 = X n exp [ r(1 − X n ) − Y n ] = f r (X n , Y n ) (1) 

Y n +1 = cX n ( 1 − exp [ −Y n ] ) = g c (X n , Y n ) (2) 

where we refer to the host population as X and the parasitoid pop- 

ulation as Y . For the BFL model, we note that if Y is decimated, the 

dynamics are described by the Ricker model, which is depicted in 

Fig. 1 . 

To simplify our analysis, we consider only the parasitoid growth 

parameter, c , as our bifurcation parameter, and without loss of gen- 

erality we consider the analysis for r = 2 . 0 . In other words, for each 

r values, we alternate the value of the growth rate of Y , as defined 

in the following equation: 

X n +1 = 

{
f r (X n , Y n ) if n even 

f r (X n , Y n ) if n odd 

(3) 

Y n +1 = 

{
g c e (X n , Y n ) if n even 

g c o (X n , Y n ) if n odd 

(4) 

Note from Fig. 1 that the chosen r value yields P2 oscillation in the 

Ricker model, which can be observed if Y = 0 for a stable solution 

of the alternate map. 

First, we depict in Fig. 2 the bifurcation diagram for the BFL 

model, Eqs. (1) and (2) , for r = 2 . 0 and c the bifurcation parameter. 

We note that for small values ( c < 1) and for large values ( c > 14) of 

the bifurcation parameter the parasite population ( Y ) cannot sur- 

vive and becomes extinct. Therefore, for Y extinction, we observe 

the expected Ricker P2 behavior. Moreover, in Fig. 3 we blow up 

three regions that we compare with the alternate map to identify 

values of undesirable parameter values that yield a periodic orbit 

when alternated. Next, we identify a value of c that yields an un- 

desirable (non-periodic) orbit. For our analysis we consider, for the 

odd iterations, a value of 4, c O = 4 . 0 , which alternates with pa- 

rameter values of the even iterates, c E . Therefore, our bifurcation 

parameter is c E , which we vary from 0 to 15, so we can compare 

the bifurcation diagram with Fig. 2 . 

In Fig. 4 we depict the bifurcation diagram for the alternate 

BFL model, and we note some significant changes in the interval 

c ∈ [11, 10]. Therefore, we can easily pick values that when alter- 

nated yield a periodic orbit. In this case, let us consider c E = 10 . 75 

and consider the three different orbits in Fig. 5 . The first part 

( Fig. 5 a) shows a chaotic behavior in the population of the host 

for c = 10 . 75 , while for c = 4 the population shows a quasiperiodic 

orbit ( Fig. 5 b). However, when we alternate the values, we obtain 

a stable periodic behavior ( Fig. 5 c). In the periodic orbit, the popu- 

lations show two spikes almost like a bursting oscillation. At these 

larger values the parasitoid, Y , should spike to a maximum value 

before it decimates the X population and at low X , the Y popula- 

tion also declines. Therefore, the host shows spikes, like a burst, 

the parasitoid shows single spikes, and, overall, the orbit shows a 

period ten (P10). 

In general, it is straightforward to select parameters and con- 

struct the bifurcation diagrams for the alternate-Parrondian map. 

For example, let us choose c E = 10 , which is a high value for the 

parasitoid growth rate constant. In this case, we present Fig. 6 , 

which has two windows of the full bifurcation diagram that can 

be compared with the diagrams in Fig. 3 . 

From the comparison, it is clear that c O = 4 . 6 and c O = 8 . 16 

are parameters associated with quasiperiodicity and chaos, respec- 

tively. However, when the map alternates the values with c O = 10 , 

which is associated with chaotic orbits, the map yields periodic or- 

bits. Therefore, we have two examples where “quasiperiodicity” + 

“chaos” = “periodic” and “chaos” + “chaos” = “periodic.”

In Fig. 7 , we show the chaotic and quasiperiodic orbits asso- 

ciated with c = 10 and c = 4 . 60 , but when these values are alter- 

nated we obtain a periodic orbit P10. In this case, the orbit shows 

two-spike bursting, whereas in the chaotic case we observe three 

or two spikes. Thus, it seems that the quasiperiodic trajectory sta- 

bilizes the chaotic orbit, giving us the case of “quasiperiodicity” + 

“chaos” = “periodic.”

In Fig. 8 , we show two chaotic trajectories for c = 10 and c = 

8 . 16 , where both trajectories show bursting-type spikes. In the 

Fig. 2. Bifurcation diagram for the BFL model for: (a) the X population and (b) the Y population. 
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