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a b s t r a c t 

An Apollonian packing is one of the most beautiful circle packings based on an old theorem of Apollo- 

nius of Perga. Ford circles are important objects for studying the geometry of numbers and the hyper- 

bolic geometry. In this paper we pursue a research on the Ford sphere packing, which is not only the 

three dimensional extension of Ford circle packing, but also a degenerated case of the Apollonian sphere 

packing. We focus on two interesting sequences in Ford sphere packings. One sequence converges slowly 

to an infinitesimal sphere touching the origin of the horizontal plane. The other sequence converges at 

fastest rate to an infinitesimal sphere in a particular position on the plane. All these sequences have their 

counterparts in Ford circle packings and keep similar features. For example, our finding shows that the 

x -coordinate of one Ford circle sequence converges to the golden ratio gracefully. We define a Ford sphere 

group to interpret the Ford sphere packing and its sequences finally. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The problem of finding the circles tangent to three given circles 

was first studied and solved by Apollonius of Perga, after whom 

the Apollonian packing are also named. As a fractal, the Apollonian 

packing arise by successively filling the interstices between mutu- 

ally tangent circles with further tangent circles. Descartes stated 

that for every four mutually tangent circles, the radii of the circles 

satisfy a certain quadratic equation. Frederick Soddy rediscovered 

the same equation in 1936 [1] . It is possible for every circle in the 

Apollonian packing to have integer radius of curvature [2] , and this 

crucial packing was known as integral Apollonian circle packings 

[3] . 

Particularly, one of the generating circles may be replaced by 

a straight line of infinite radius. In this construction, the mutually 

tangent circles that are also tangent to the straight lines form a 

family of Ford circles introduced by Ford [4] . Ford circles are an 

important object of study in the geometry of numbers and hyper- 

bolic geometry and has stimulated much further work. The Farey 

sequence F Q is in bijection with the set of Ford circles tangent to 

the real line at points in the interval [0, 1]. 

Generalizations of Descartes configurations can be made from 

two-dimensional space to three-dimensional space and beyond. 

A Descartes configuration in R n consists of n + 2 mutually tan- 

gent (n − 1) -spheres in n -dimensional Euclidean spaces. Proofs of 
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the n -dimensional Soddy-Gosset theorem (the generalization of 

Descartes’ theorem) first appeared in Pedoe’s paper [5] . Particu- 

larly, a three-dimensional equivalent of the Apollonian packing is 

an Apollonian sphere packing. 

Ford sphere packing is the degenerated case of the Apollonius 

sphere packing. It is constructed from three identical spheres on a 

horizontal plane of zero curvature. Ford sphere packing is also the 

three-dimensional equivalent of the Ford circle packing. Two mu- 

tually tangent circles become three mutually tangent sphere, and 

one horizontal line becomes one horizontal plane. 

Fractal dimension is a measure in fractal geometry to describe 

how much space a fractal fills. Boyd [6] determined that the 

residual set dimension of Apollonian packing should lie between 

1.300197 and 1.314534. Herrmann [7] calculated the fractal dimen- 

sions for two types of space-filling packing. The fractal dimen- 

sion of the first type ( n = m = ∞ ) agrees well with the bound in 

[6] . Mcmullen [8] presented an eigenvalue algorithm to compute 

the Hausdorff dimension of the Apollonian gasket. Athreya et al. 

[9] numerically computed the radial density for Apollonian cir- 

cle packing, and extended the computation method to the Soddy 

sphere packing. Marszalek [10] calculated the total area of Ford 

circles in the range of 0 ≤ p 
q ≤ 1 . Reis et al. [11] presented a sys- 

tematic algorithm to estimate the maximum packing density of 

spheres when the grain sizes are drawn from an arbitrary size dis- 

tribution. Borkovec et al. [12] yielded the estimate for the fractal 

dimension of Apollonius sphere packing, by adding up all spheres 

of radius greater than 2 −19 contained in the Apollonian packing of 

the unit sphere. 
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Table 1 

Some computational results for the Apollonian packing. 

Item Value( ≈ ) References 

Dimension of the Apollonian circle packing 1.305688 Mcmullen et al. [8] 

Radial density of the Apollonian circle 

packing 

0.9549 Athreya et al. [9] 

Total area of Ford circles for 0 ≤ p 
q 

≤ 1 0.8723 Marszalek [10] 

Radial density of the Ford sphere packing 0.853 Athreya et al. [9] 

Dimension of the Apollonian sphere 

packing 

2.473946 Borkovec et al. [12] 

We collect some computational results, together with the refer- 

ences, shown in Table 1 . 

The set of Descartes quadruples encodes geometric informa- 

tion of the Apollonian packings [13] . And the action of a discrete 

group which is isomorphic to the Lorentz group O (3, 1) permits 

one to walk around on a fixed Apollonian packing, moving from 

one Descartes quadruple to another quadruple in the same pack- 

ing [14] . The discrete group, known as the Apollonian group, was 

introduced by Hirst [15] in 1967, and was later used in [16–18] for 

studying Apollonian packings. Graham et al. [19] introduced two 

more related finitely generated groups in Aut ( Q D ), the dual Apol- 

lonian group produced from the Apollonian group by a ”duality”

conjugation, and the super-Apollonian group which is the group 

generated by the Apollonian and dual Apollonian groups together. 

Besides, Graham et al. [20] introduced n -dimensional analogues of 

the Apollonian group, the dual Apollonian group and the super- 

Apollonian group. 

Short [21] gave an elementary geometric proof using Ford cir- 

cles that the convergents of the continued fraction expansion of a 

real number α coincide with the rationals that are best approxi- 

mations of the second kind of α. Imamoglu et al. [22] showed that 

there exists exactly a unique zero of Eisenstein series inside each 

Ford circle. Percolation on a fractal like a circle or sphere packing 

is also an interesting topic [23] . 

One direct application of the circle packings is space-filling 

bearings, where the rotating cylinders of bearings corresponding to 

the circles in packings. Herrmann [7] showed that any even num- 

ber of bearings could rotate on each other without slip and with 

the same tangential velocity. Oron and Herrmann [24] provided an 

algorithm to construct these bearings and explained the unique- 

ness of such construction. Baram and Herrmann [25] extended 

the design principles to the three-dimensional bearings. Stger and 

Arajo [26] performed an experiment showing how to impose any 

slip-free rotation state by only controlling two spheres. Arajo et al. 

[27] found that space-filling bearings can be perceived as complex 

network realizations of oscillators with asymmetrically weighted 

couplings. Furthermore, Satija [28] unveiled a mapping between an 

integral Apollonian circle packing and a quantum fractal that de- 

scribes an iconic condensed matter problem of electrons moving 

in a two-dimensional lattice in a transverse magnetic field. 

The primary goal of this paper is to conduct research on se- 

quences in the Ford sphere packing. Sequences play an important 

role in linear algebra, analysis and topology. So far the only se- 

quence in Ford circles has received attention is Farey sequence. If 

0 ≤ p / q < 1 then the Ford circles that are tangent to C p / q are pre- 

cisely the Ford circles for fractions that are neighbours of p / q in 

some Farey sequence. 

In this paper, we will focus on two other types of sequence. 

These sequences exist both in the Ford circle packings and the 

Ford sphere packings. The first sequence is a monotonic decreasing 

and slowly convergent sequence. The second sequence, by contrast, 

converge to a particular point at the fastest rate. To the best of our 

knowledge, the study on this topic has not emerged yet. 

We do not give an extension of these sequences to four or 

higher dimensions, because in dimensions n ≥ 4 the spheres in any 

such ensemble overlap and no longer correspond to a packing, as 

shown by Lemma 4.1 in [20] . 

The paper is organized as follows: 

In Section 2 , we provide a brief background, some mathemati- 

cal notation and concepts about the Apollonian packing and Ford 

circles. In Section 3 , we construct the Ford sphere packing and de- 

fine the Ford sphere group in detail. We discuss the slowly con- 

verging sequence of the Ford circle packing in Section 4 , and find 

a similar sequence in the Ford sphere packing thereafter. We show 

in Section 5 that there is another recursive sequence with fastest 

convergence rate in the Ford sphere packing. Naturally we explore 

its counterpart in the Ford circle packing. In Section 6 , we describe 

the Ford sphere group and its group action to interpret transforma- 

tions of Ford sphere configurations. Section 7 concludes the paper 

finally. 

2. Preliminaries and main results 

We start in terms of the circles’ oriented curvatures (or signed 

curvature). The oriented curvature of a circle is defined as b = ± 1 
r , 

where r is its radius. The smaller a circle, the larger is the mag- 

nitude of its curvature, and vice versa. The minus sign in b = ± 1 
r 

applies to an internally tangent circle that circumscribes the other 

circles. 

Ren ́e Descartes found a relation between the radii for four mu- 

tually disjoint tangent circles which is now called the Descartes 

circle theorem. 

Theorem 1 (Descartes circle theorem [29] ) . If four circles are tan- 

gent to each other at six distinct points, and the circles have ori- 

ented curvatures b i (for i = 1 , · · · , 4 ), then the quadruple of mutually 

touching circles satisfy the Descartes equation: 

( b 1 + b 2 + b 3 + b 4 ) 
2 = 2 

(
b 2 1 + b 2 2 + b 2 3 + b 2 4 

)
. 

Descartes circle theorem also applies to a line (a degenerate cir- 

cle with zero curvature) and three circles, or two lines and two 

circles that are all mutually tangent. 

Any quadruple ( b 1 , b 2 , b 3 , b 4 ) satisfying this equation is defined 

as a Descartes quadruple. And a set of four mutually tangent circles 

is called a Descartes configuration . 

Starting from any Descartes configuration, we can recursively 

construct an infinite circle packing, in which new circles are added 

which are tangent to three of the circles that have already been 

placed and have interiors disjoint from any of them. The infinite 

packing obtained in the limit of adding all possible such circles is 

called an Apollonian packing ( Fig. 1 ). 

The Descartes circle theorem gives a quadratic equation for the 

Descartes quadruple b = (b 1 , b 2 , b 3 , b 4 ) , which can be rewritten as 

b 
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Eq. (1) is the Descartes quadratic form of the Descartes circle the- 

orem. 

Given an oriented circle C with center ( x, y ) and oriented cur- 

vature b , its curvature-center coordinates can be defined by the 

1 × 3 row vector m ( C ) := ( b, bx, by ). The curvature-center coordi- 

nates of a straight line can be defined as m ( H ) := (0, h ), where 

h = (h 1 , h 2 ) is the unit normal vector of the line. 

Theorem 2 (Extended Descartes theorem [29] ) . Given a Descartes 

configuration D of four oriented circles with oriented curvatures 

( b 1 , b 2 , b 3 , b 4 ) and centers {( x i , y i ): 1 ≤ i ≤ 4}, 
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