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a b s t r a c t 

This research investigates pattern self-organization along the route to chaos in a space- and time-discrete 

predator–prey system, where the prey shows convection movement in space. Through analysis on Turing 

instability of the system, pattern self-organization conditions are determined. Based on the conditions, 

simulations are performed under two initial conditions, demonstrating two pattern transitions along the 

route to chaos. In the first pattern transition, the patterns start from regular stripes, experiencing twisted 

stripes, then return to regular stripes again. The second pattern transition is much more complex and 

shows three stages. Especially, an alternation between ordered patterns and disordered chaos is found, 

contributing greatly to the spatiotemporal complexity of the system. When the system stays at the ho- 

mogeneous chaotic states, Turing instability driven by convection and diffusion can still force the self- 

organization of regular striped patterns. The finding in this research provides a new comprehending for 

pattern self-organization and transition in spatially extended predator–prey systems. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In ecological systems, interactions between species and induced 

evolution of species are important features. From biological and 

ecological point of view, predator–prey relationship is one of the 

most basic and widely existing interactions. Studies in mathemat- 

ical models are informative in understanding the dynamic rela- 

tionship between predator and prey and their complex properties 

[1] and [2] . Since the pioneering works of Lotka and Volterra, a 

variety of predator–prey models have been developed, revealing 

and mimicking nonlinear dynamical behaviors of predator–prey in- 

teractions in various circumstances, such as periodic oscillations, 

quasiperiodic motions, chaotic attractors, and so on [2,3,4,5,6] and 

[7] . 

Biologically speaking, the predator–prey interactions occur in a 

spatial world and investigation on the predator–prey interactions 

over a range of spatial and temporal scales, which comes as a chal- 

lenge, is necessary and of great ecological significance [7] . Natu- 

rally, nonlinear interactions and spatial heterogeneity in predator–

prey systems can often lead to spontaneous formation of patterns, 

which are heterogeneous macrostructure with certain temporal or 

spatial orderliness [1] . Spatial pattern formation in spatiotempo- 

ral predator–prey systems has received significant attention from 

many researchers during last three decades [1,8,9,10,11] and [12] . 
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Intense research works have been initiated based upon the classi- 

cal works of Segel and Jackson [13] and Levin and Segel [14] , which 

first explained the self-organization of plankton patchiness due to 

diffusive instability. 

As so far, various types of mathematical models have been de- 

veloped for studying the pattern formation of predator–prey sys- 

tems, including cellular automata, evolutionary games, reaction- 

diffusion models, coupled map lattices (CMLs), etc. Many inter- 

esting theoretical results have been obtained recently. For exam- 

ple, Perc and his coworkers found that defensive alliances and 

spatiotemporal self-organization can emerge spontaneously if the 

chain length of a predator–prey system is more than three [15] and 

[16] , and that the spontaneous emergence of cyclic dominance acts 

one of the main driving forces behind complex pattern forma- 

tion [17] . Killingback et al. proposed a novel competitively cou- 

pled map lattice and found that the competitive coupling can re- 

sult in spontaneous symmetry breaking of a homogeneous ini- 

tial configuration and the formation of stable spatial patterns [32] . 

Doebeli and Killingback found that with the assumption of quasi- 

local competition, the metapopulation can reach a new stable state 

and result in an irregular spatial pattern of local population abun- 

dance [33] . With the application of evolutionary games in space, a 

few peculiar spatial structures such as spirals and heteroclinic cy- 

cles were also discovered [34] and [35] . As recorded in literature, 

many complex spatial patterns have been revealed for predator–

prey systems ranging from plant distributions to plankton aggre- 
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gation, such as patterns of spots, stripes, labyrinth, spirals, gaps, 

and so on [9,18] and [19] . 

Among the existed spatiotemporal predator–prey models, 

reaction-diffusion models are the mostly widely used theoretical 

models for studying spatial pattern formation of predator–prey 

systems [9,18] and [19] . The nonlinear mechanism for pattern for- 

mation of reaction-diffusion models is diffusive instability (or Tur- 

ing instability), which was introduced by Alan Turing in his sem- 

inal work [20] to explain the chemical basis of morphogenesis. 

With the application of Turing instability, many researchers suc- 

cessfully explained the formation of stationary and non-stationary 

patchy patterns, driven by the spatial movement of individuals of 

prey and predator populations. In literature, the development of 

reaction-diffusion predator–prey models mainly focuses on two as- 

pects. First, diverse reaction functions are proposed to describe 

the dynamics of predator and prey. These reaction functions may 

incorporate particular growth functions, functional responses or 

predator numerical responses [21] and [22] . Second, dispersal of 

predator and prey populations in space can be described by dif- 

ferent diffusion types, such as self-diffusion, convection-diffusion, 

cross-diffusion [21] , etc. 

Recently, a few researchers further considered the spatially and 

temporally discrete forms of reaction-diffusion model and devel- 

oped a new type of predator–prey model which is given by cou- 

pled map lattice (CML) [4,7,8,10,11] and [12] . In comparing with 

the continuous reaction-diffusion models, the CMLs often show ad- 

vantages in describing nonlinear characteristics and spatiotempo- 

ral complexity of predator–prey systems. For example, Rodrigues 

et al. [12] revealed a rich variety of pattern formation scenarios 

in a space- and time-discrete predator–prey system with a strong 

Allee effect and found spatiotemporal multistability under the ef- 

fects of different initial conditions. In the research of Huang et al. 

[8] and [10] , they compared the spatial pattern formation between 

a reaction-diffusion model and its CML version and demonstrated 

that the nonlinear mechanisms of the CML better capture the com- 

plexity of pattern formation of predator–prey systems. Moreover, 

the CMLs show special capability of describing discontinuous prop- 

erties (e.g. patchy environment or fragmented habitat) of predator–

prey systems [7] . 

Although lots of theoretical models have been established for 

predator–prey systems, still few studies focus on applying the 

CMLs to investigate the spatiotemporal predator–prey dynamics. As 

described in previous research works, the CMLs can play a key role 

in fostering the understanding on the pattern formation of space- 

and time-discrete predator–prey systems [4,7,8,10,11] and [12] . In 

a new research on space- and time-discrete predator–prey system, 

Huang and Zhang found the pattern formation is closely related 

to bifurcation and chaos [4] . First, the cross effects of Turing bi- 

furcation, flip bifurcation and Hopf bifurcation can lead to three 

nonlinear mechanisms of pattern formation, i.e., pure Turing in- 

stability, flip-Turing instability and Hopf–Turing instability. Second, 

flip bifurcation and Hopf bifurcation start the routes to the homo- 

geneous chaotic oscillating states, at which the spatial symmetry 

breaking occurring can still lead to the self-organization of ordered 

predator–prey patterns. Third, along the routes to chaos, ordered 

patterns may gradually transit to spatiotemporal chaos with com- 

plete disorder. 

However, the study on pattern formation along the route to 

chaos is seldom documented in literature. As an important aspect 

of spatiotemporal complexity, this topic still needs to be explored 

in the field of ecology and nonlinear dynamics. In this research, 

we extend the previous research of Huang and Zhang [4] , further 

investigating the pattern formation along the routes to chaos in 

a reaction-convection-diffusion predator–prey system. The convec- 

tion in predator–prey systems often results from purely environ- 

mental factors which lead to the individuals exhibiting a correlated 

motion towards certain direction [23] . Under the effects of convec- 

tion, the pattern formation of predator–prey systems may present 

particular nonlinear characteristics. 

This work is organized as follows. In Section 2 , we propose a 

CML model to describe the reaction-convection-diffusion predator–

prey system, based on the research of Huang and Zhang [4] . In 

Section 3 , the results of stability analysis and bifurcation analy- 

sis are provided to determine the pattern formation conditions. In 

Section 4 , numerical simulations are performed to show the pat- 

tern formation of the studied predator–prey system. In Section 5 , 

discussion and conclusion are given. 

2. The CML model 

Based on the research of Cai et al. [18] , Huang and Zhang de- 

veloped a CML model to investigate the bifurcation, chaos and 

pattern formation of a space- and time-discrete reaction-diffusion 

predator–prey system [4] . At the beginning, we introduce the Cai’s 

model, which is given by the following partial differential equa- 

tions: 

∂U 

∂T 
= r 1 U 

(
1 − U 

K 

− m 1 

U + b 1 

)
− c 1 UV 

U + K 1 

+ D 1 ∇ 

2 U, (1a) 

∂V 

∂T 
= r 2 V 

(
1 − c 2 V 

U + K 2 

)
+ D 2 ∇ 

2 V, (1b) 

in which r 1 is the intrinsic growth rate of the prey; K is the prey 

carrying capacity; m 1 /( U + b 1 ) is the term of additive Alee effect, 

m 1 and b 1 are the Alee effect constants; c 1 U/ ( U + K 1 ) describes the 

Holling type-II functional response, in which c 1 is the maximum 

predation rate and K 1 measures the extent to which environment 

provides protection to U ; ( r 2 − c 2 V/ ( U + K 2 )) describes a modified 

Leslie-Gower type numerical response, in which r 2 is the growth 

rate of the predator, and K 2 / c 2 measures the predator carrying ca- 

pacity in the absence of the prey U , and in such case, the preda- 

tor v is actually generalist; ∇ 

2 is the Laplacian operator describing 

the spatial dispersal of populations, and D 1 and D 2 are the diffu- 

sion coefficients corresponding to U and V ; ∇ 

2 = ∂ 2 / ∂ x 2 + ∂ 2 / ∂ y 2 , 
in which x and y are spatial coordinates in two-dimensional space 

describing the position of U and V . 

In above model, the spatial motions of both predator and prey 

populations are described by diffusion term, which means the 

spatial motion of both populations is random, and isotropic, i.e., 

without any preferred direction. In nature, however, the individ- 

uals often exhibit a correlated motion towards certain direction, 

causing another type of spatiotemporal dynamics occurring in the 

predator–prey systems. The origin of such directional motion may 

have different mechanisms. One of the most typical motions is 

convection, which may be corresponding to the case that the cor- 

related motion caused by purely environmental factors such as 

wind in case of seeds or pollen spreading or water current in 

case of plankton communities [24] . In this research, we consider 

the convection for prey population, and therefore the model (1) is 

changed to be 

∂U 

∂T 
= r 1 U 

(
1 − U 

K 

− m 1 

U + b 1 

)
− c 1 UV 

U + K 1 

+ D 1 ∇U, (2a) 

∂V 

∂T 
= r 2 V 

(
1 − c 2 V 

U + K 2 

)
+ D 2 ∇ 

2 V, (2b) 

where ∇ = ∂ / ∂ x describes the convection operator and D 1 here 

means the speed of convection for the prey. 

For reducing the number of parameters in system (2), change 

of variables is made. Via the following expressions, 

u = U/K, v = V/ K 2 , t = r 1 T , m = m 1 /K, b = b 1 /K, 

c = c 1 K 2 / r 1 K , k 1 = K 1 /K , r = r 2 / r 1 , 
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