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a b s t r a c t 

Investigated in this paper is the generalized nonlinear Schrödinger equation with distributed coefficients, 

which describes the amplification or absorption of pulses propagating in a monomode optical fiber with 

distributed group-velocity dispersion and self-focusing Kerr nonlinearity. By virtue of the Kadomtsev- 

Petviashvili hierarchy reduction, we obtain the rogue waves based on rogue-wave solutions in terms 

of the Gramian under certain constraint. We study the effects of group-velocity dispersion, nonlinearity 

and amplification/absorption coefficients on the rogue waves with the help of figures. Amplitudes of the 

rogue waves are independent with the group-velocity dispersion and nonlinearity coefficients. The first- 

order rogue wave with an eye-shaped distribution density and the second-order rogue waves with the 

highest-peak amplitude and with the triple-peak structure are presented. Both the intermingled or sep- 

arated composite rogue waves are derived. Periodic rogue waves are obtained and period of the periodic 

rogue wave increases with the period of the group-velocity dispersion. Furthermore, nonlinear tunneling 

of the rogue waves is observed: rogue waves get amplified when they reach to the dispersion barriers 

and recover their original shapes after passing through the barriers, while amplitudes of the rogue waves 

decrease inside the dispersion wells. Amplification/absorption coefficient influence the background and 

amplitude of the rogue wave, and three types of the backgrounds are discussed due to different amplifi- 

cation/absorption coefficients. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Rogue waves, known as the oceanic phenomena responsible 

for the maritime disasters, have been thought to appear from 

nowhere and disappear without a trace [1–3] . It has been proved 

that rogue wave is localized in both space and time with crest 

heights two times larger than the significant height of its sur- 

roundings [4,5] . Experimental realizations of the rogue waves have 

been achieved in such nonlinear physical systems as those in the 

atmospheric dynamics [6] , plasmas physics [7] , Bose–Einstein con- 

densation [8] and nonlinear optics [9,10] . Rational solutions, as the 

helpful understanding of the rogue-wave phenomena, are a kind of 

solutions spatially and temporally localized from the background 

states [11,12] . Dynamics of the rogue waves has been modeled by 

a nonlinear Schrödinger equation (NLSE) [9,13,14] . The NLSE has 

not only been used to give a description of slow evolution of a 

weakly nonlinear wave packet in the deep water [13] , but also 

to describe the light-pulse propagation in the nonlinear optical 
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fiber [9,14] . Rogue waves for the NLSE have been investigated: The 

first-order rogue waves, also called the Peregrine solitons, have 

been described [15,18] ; People have experimentally studied the 

characteristics of optical rogue waves [16,17] and devoted them- 

selves to the construction of the rogue-wave solutions of the NLSEs 

with variable coefficients in the inhomogeneous nonlinear optical 

fibers [19–26] . Relevant NLSE issues can be seen in Refs. [27–30] . 

Relevant soliton issues can be seen in Refs. [31–34] . 

In this paper, we will consider the following generalized 

NLSE with distributed coefficients in a monomode optical fiber 

[19,35–41] 

iu z − 1 

2 

β(z) u tt + γ (z) u | u | 2 + id(z) u = 0 , (1) 

where u ( z, t ) is the complex envelope of the electrical field in 

a comoving frame, z is the normalized propagation distance and 

t is the retarded time, β( z ) represents the group-velocity dis- 

persion (GVD) coefficient, γ ( z ) is the nonlinearity coefficient and 

d ( z ) is amplification/absorption coefficient. When β(z) = 2 , γ (z) = 

−2 and d(z) = 0 , Eq. (1) can be reduced to the NLSE [9,13–18] . 

Eq. (1) has described the amplification or absorption of pulses 

propagating in a monomode optical fiber with distributed GVD 
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and self-focusing Kerr nonlinearity [35] . In practical applications, 

aside from the studies of amplification/absorption and compres- 

sion/broadening of optical solitons in inhomogeneous systems, 

Eq. (1) has been used to study the dispersion managed transmis- 

sion systems [35] . Integrability constraint for Eq. (1) has been de- 

rived through the Painlevé test [36] . Multi-soliton solutions [35–

40] and self-similar solutions [41] for Eq. (1) have been obtained. 

Based on the similarity transformation, first-order rogue wave and 

second-order rogue wave with the highest peak amplitude for 

Eq. (1) have been derived [19] . In addition, in optical communica- 

tion and plasmas physics, two special cases of Eq. (1) can be seen 

as follows: 

(1) For the pulse compression technique capable of producing 

the high-quality 1.3-ps pulses at a repetition rate of 10 GHz, 

Eq. (1) admits the following form with a reference frame mov- 

ing at the group velocity [42] : 

�χ = 

α(χ ) 

2 

� + 

iβ2 

2 

�ςς − iγ�| �| 2 = 0 , 

where � is the field envelope, ς and χ represent the retarded 

time and propagation distance, α( χ ) is the χ-dependent gain 

coefficient, β2 is the GVD and γ is the nonlinear coefficient; 

(2) For an unmagnetized dusty plasma consisting of negatively 

charged dust fluid and ions of two different temperatures, 

Eq. (1) can be reduced to the cylindrical and spherical 

geometry-modified NLSE [43] : 

i �T + �ZZ + 2�| �| 2 + i 
M 

2 T 
� = 0 , 

where T and Z are the stretched time and radial coordinate, 

� represents the electrostatic wave potential, M represents the 

cylindrical (M = 1) and spherical (M = 2) effects. 

In this paper, our goal will be focused on the rogue-wave so- 

lutions for Eq. (1) through the Kadomtsev-Petviashvili (KP) hierar- 

chy reduction [18,44–46,48] , which can construct the higher-order 

and multi-rogue waves. For example, the KP hierarchy reduction 

has been used to derive the rogue waves in such constant-variable 

equations as the NLSE [18] , Davey-Stewartson equation [44] , KP 

equation with self-consistent sources [45] and Mel’nikov equa- 

tion [49] . 

In Section 2 , by virtue of the KP hierarchy reduction, we will 

obtain the N th-order rogue-wave solutions in terms of the Gramian 

for Eq. (1) , which have not been seen before, to our knowledge. 

Based on such solutions, besides the first-order rogue wave and 

second-order rogue wave with the highest peak amplitude, we also 

derive the second-order rogue wave with the triple-peak struc- 

ture, and properties of the rogue waves will be studied. Discus- 

sions on the first- and second-order rogue waves will be examined 

for some choices of the GVD and amplification/absorption coeffi- 

cients in Section 3 . Section 4 will be our conclusions. 

2. Bilinear forms and rogue waves for Eq. (1) 

2.1. Bilinear forms 

Considering the rogue waves that approach the non-zero back- 

ground at the large z and t , we take the variable transformation 

u = e i 
∫ 
γ (z) e −

∫ 
2 d(z) dz dz ˜ u , (2) 

where ˜ u (z, t) is a complex function of z and t , and rewrite 

Eq. (1) as 

i ̃  u z − 1 

2 

β(z) ̃  u tt + γ (z) ̃  u 

[| ̃  u | 2 − e −
∫ 

2 d (z) d z 
]

+ id( z) ̃  u = 0 . (3) 

Through the dependent variable transformation 

˜ u = e −
∫ 

d (z) d z g(z, t) 

f (z, t) 
, (4) 

where g ( z, t ) is a complex function and f ( z, t ) is a real one, 

Eq. (3) can be transformed into the bilinear forms: 

β(z) D 

2 
t g · f − 2 iD z g · f = 0 , (5a) 

D 

2 
t f · f + 2 K f · f = 2 K| g| 2 , (5b) 

under the integrable constraint for Eq. (1) to pass the Painlevé

test [36] , 

γ (z) = −Kβ(z) e 2 
∫ 

d (z) d z , (6) 

where K is a positive constant, D z and D t are the Hirota bilinear 

differential operators defined by [47] 

D 

χ1 
z D 

χ2 

t (F · G ) = 

(
∂ 

∂z 
− ∂ 

∂z ′ 

)χ1 
(

∂ 

∂t 
− ∂ 

∂t ′ 

)χ2 

× F (z, t) · G (z ′ , t ′ ) | z ′ = z,t ′ = t , 
with χ1 and χ2 being the non-negative integers, F as a function of 

z and t, G as a function of the formal variables z ′ and t ′ . 

2.2. Rogue waves for Eq. (1) 

In order to obtain the rogue waves for Eq. (1) , we start with 

the Gramian expression of the KP hierarchy [18,48] and present the 

rogue-wave solutions for Eq. (1) in the following Theorem 1 . 

Theorem 1. Eq. (1) has the rogue-wave solutions that are given by 

Transformations (2) , (4) and Integrable Constraint (6) , where g and f 

given by the N × N determinants 

u = e −
∫ 

iKβ(z)+ d(z) dz g 

f 
, g = ˜ τ1 , g ∗ = ˜ τ−1 , f = ˜ τ0 , (7) 

where 

˜ τn = 

∣∣m 

(n ) 
2 i −1 , 2 j−1 

∣∣
1 ≤i, j≤N 

, (n = −1 , 0 , 1) 

the matrix elements of ˜ τn are defined by 

m 

(n ) 
i, j 

= 

i ∑ 

k =0 

j ∑ 

l=0 

a k 
(i − k )! 

a ∗
l 

( j − l)! 
(p∂ p + ξ

′ + n ) i −k 

× (q∂ q + η
′ − n ) j−l 1 

p + q 

∣∣∣
p=1 ,q =1 

, 

ξ
′ = p 

√ 

K t − ip 2 K 

∫ 
β(z) dz, η

′ = q 
√ 

K t + iq 2 K 

∫ 
β(z) dz, 

j and N are the integers, i in subscript denotes an integer, otherwise 

i 2 = −1 , p and q are the complex variables, a k ’s are the complex con- 

stants, k and l are the positive integers, “∗” represents the complex 

conjugation. The proof of Theorem 1 is given in the Appendix A . 

2.2.1. The first-order rogue waves 

From Solutions (7) , we set a 0 = 1 without loss of general- 

ity [18] , and obtain the first-order rogue waves by taking N = 1 , 

u = e −
∫ 

iKβ(z)+ d(z) dz 
m 

(1) 
11 

m 

(0) 
11 

, (8) 

where 

m 

(1) 
11 

= 

(√ 

K t − iK 

∫ 
β(z) dz + 

1 

2 

+ a 1 

)
w 

×
(√ 

K t + iK 

∫ 
β(z) dz − 3 

2 

+ a ∗1 

)
+ 

1 

4 

, 

m 

(0) 
11 

= 

(√ 

K t − iK 

∫ 
β(z) dz − 1 

2 

+ a 1 

)

×
(√ 

K t + iK 

∫ 
β(z) dz − 1 

2 

+ a ∗1 

)
+ 

1 

4 

. 
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