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a b s t r a c t 

Introduced in 1966 by Moore and Spiegel, the so called Moore–Spiegel system displays aperiodic dynam- 

ics that describes the irregular variability of the luminosity of the stars. The Moore–Spiegel system is 

defined by a jerk system with a single cubic nonlinearity that is responsible for the chaotic dynamics of 

the whole system. In this contribution, the dynamics of the generalized Moore-Spiegel system recently 

investigated by [Letellier and Malasoma, Chaos, Solitons & Fractals 69 (2014) 40–49] is considered. Some 

fundamental dynamical properties of the model such as fixed points, phase portraits, basins of attraction, 

bifurcation diagrams, and Lyapunov exponents are investigated. Analysis shows that chaos is achieved via 

period-doubling and symmetry restoring crisis scenarios. One of the major results of this work is the 

finding of various windows in the parameters’ space in which two, three, four or six different attractors 

coexist, depending solely on the choice of initial conditions. This unusual and striking phenomenon has 

not yet been reported previously in the Moore–Spiegel system, and thus deserves dissemination. Com- 

pared to some lower dimensional systems capable of six disconnected coexisting periodic and chaotic 

attractors reported to date, the Moore–Spiegel system represents one of the simplest and the most ‘ele- 

gant’ paradigms. Some PSIM based simulations of the nonlinear dynamics of the system are carried out 

to validate the results of theoretical analyzes. 

Published by Elsevier Ltd. 

1. Introduction 

Multistability is one of the most striking phenomena in the dy- 

namics of nonlinear and chaotic systems. Considered as the coex- 

istence of two or more attractors at a point of operation in phase 

space, multistability is characterized by its sensitivity to initial con- 

ditions [1] . It is possible to leave from one attractor to another by 

just changing the initial conditions. Correspondingly, the complex- 

ity of the system increases with the number of solutions that co- 

exist. The phenomenon of multistability sometimes appears as an 

undesired behavior in the application of chaotic oscillators due to 

the change of unconditional state of the attractors [2–6] . The study 

for this type of phenomenon in nonlinear dynamic systems thus 

becomes a major issue in the field of science. Recently, some re- 

searchers have studied this question in order to analyze multista- 

bility in systems described by simple mathematical models [7–9] . 
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In this contribution, we consider the dynamics of the well- 

known Moore and Spiegel system paying particular attention on 

the mechanism of chaos generation as well as the occurrence of 

multiple coexisting attractors. Before focusing our attention on the 

generalized Moore and Spiegel oscillator under consideration, let 

us briefly recall the interesting works related to the original Moore 

and Spiegel oscillator. The original form of mathematical model of 

this oscillator was introduced by Moore and Spiegel [10] in the Jerk 

form as 
... 
x + ẍ + ( T − R + R x 2 ) ̇ x + T x = 0 , where R and T are param- 

eters related to Prandtl, Taylor and Rayleigh numbers. The model 

represents a small fluid element oscillating vertically in a tempera- 

ture gradient with a linear restoring force. This element exchanges 

heat with surrounding fluid and its buoyancy depends upon tem- 

perature. In the latter literature, the authors demonstrated that this 

oscillator can generate the aperiodic oscillations describing the ir- 

regular variability of the luminosity of the stars. Nineteen years 

later, Auvergne and Baglin [11] proposed a model of the motion 

of the ionization zone of a star by an equation derived from this 

Moore and Spiegel oscillator. In 1997, Balmforth and his colleague 

studied the bifurcations and synchronization (in the sense of Pec- 

ora and Carroll) in the Moore–Spiegel oscillator [12] . From this 
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Fig. 1. Bifurcation diagram (a ) showing local maxima of the coordinate x 1 versus β

and the corresponding graph (b) of largest Lyapunov exponent ( λmax ) plotted in the 

range 5 . 7 ≤ β ≤ 5 . 9 . A positive exponent ( λmax > 0) indicates chaos while regular 

states are characterized with negative values of Lyapunov exponent ( λmax < 0) . 

synchronization study, the authors concluded that the Moore and 

Spiegel system could not be synchronized using two coordinates, 

but may be possible with the variable x . However, they showed 

that synchronization of this coordinate fails on certain parameter 

ranges. The determination of where synchronization is successful 

boils down to a numerical exercise. More recently, Letellier and 

Malasoma studied the effect of parity of nonlinearity on the gener- 

alized model of Moore and Spiegel [13] . The system is described by 

a relatively simple “Jerk” equation as
... 
x + a ̈x + b ̇ x + cx + d x n ˙ x = 0 . It 

follows that in these generalized Jerk equations, the single non- 

linear term has a parity which depends on x n ˙ x . The system has 

an inversion symmetry when n is even and no symmetry prop- 

erty when n is odd. They show also that the topology of chaotic 

solutions only depends on the parity of n and the value of n only 

affects the possibility to develop the chaotic solution. Motivated by 

the above-mentioned results, and provided the importance of the 

Moore–Spiegel system, this paper focuses on the dynamics of gen- 

eralized Moore and Spiegel system with particular emphasis on the 

occurrence of multiple attractors. Some windows in the parameter 

space are found in which two, four or six distinct non static co- 

existing attractors are reported. We would like to stress that, to 

the best of the author’s knowledge, a situation involving the co- 

existence of multiple (up to six or four) non-static (i.e. oscillatory) 

attractors in Moore–Spiegel system is not reported so far in the 

relevant literature. 

The rest of the paper is arranged as follows. Section 2 de- 

scribes the mathematical model of the system under investigation 

and highlights possible symmetries and implications. The stability 

of the fixed point is analyzed. In Section 3 , the bifurcation struc- 

tures of the system are investigated numerically yielding some 

windows (in the parameter space) of multiple coexisting attrac- 

tors. In Section 4 , an appropriate electronic circuit describing the 

Moore–Spiegel system is designed. Some PSIM simulations of dif- 

ferent kinds of coexisting attractors are carried out to confirm the 

numerical analysis. Finally in Section 5 , we summarize our results 

and draw the conclusions of this work. 

2. Description and analysis of the model 

In this section, the model of the generalized Moore and Spiegel 

system is introduced and described. The existence of attractive sets 

(i.e. attractors) is examined by computing the volume contraction 

rate of the model. The symmetry properties and possible implica- 

tions are discussed. The stability and nature of the fixed point are 

studied based on the Routh stability criterion. 

2.1. The model 

The mathematical model of the generalized Moore and Spiegel 

system [14] considered in this work is expressed by the following 

simplified form: { 

˙ x 1 = x 2 
˙ x 2 = αx 3 
˙ x 3 = −x 3 + ε x 2 − x 2 x 1 

2 − βx 1 

(1) 

where the dot denotes differentiation with respect to time, 

α, β, ε ≥ 0 are tuneable parameters. It is obvious that system 

(1) has a single nonlinearity in which two state variables (namely 

x 1 and x 2 ) are involved. The presence of this nonlinearity accounts 

for the chaotic behavior of the whole system. Equivalently system 

(1) can be written as a jerk equation: 
... 
x + ẍ + 

(
−ε + x 2 

)
α ˙ x + αβx = 0 . (2) 

This latter expression is typical of ‘elegant’ jerk dynamic sys- 

tems. Mention that system (1) represents one of the simplest au- 

tonomous 3D system reported to date, capable of displaying six 

disconnected chaotic and periodic attractors (see Section 3 and 4 ) 

depending solely on the initial conditions [15–17] . Finally, one can 

note that system (4) is dissipative with an exponential contraction 

rate: 

dV 

dt 
= exp ( −cτ ) (3) 

provided that 

∇V = 

∂ ˙ x 1 
∂ x 1 

+ 

∂ ˙ x 2 
∂ x 2 

+ 

∂ ˙ x 3 
∂ x 3 

= −c < 0 (4) 

at any given point ( x 1 , x 2 , x 3 ) of the state space. Consequently, the 

general condition of dissipativity related to the existence of attrac- 

tive sets in our model is satisfied [19–21] . 

2.2. Symmetry 

System (1) is unchanged under the coordinate transformation: 

( x 1 , x 2 , x 3 ) ⇔ ( −x 1 , −x 2 , −x 3 ) . This means that if ( x 1 , x 2 , x 3 ) is a 

solution of system (1) for a given set of parameters values, then 

( −x 1 , −x 2 , −x 3 ) is also a solution for the same parameters set. A 

symmetric solution is a solution of (1) that is invariant under the 

above transformation [14,18] ; otherwise it is an asymmetric solu- 

tion. The single equilibrium point E 0 ( 0 , 0 , 0 ) is a trivial symmet- 

ric static solution. As a result, attractors in phase space must be 

symmetric by inversion with respect to the origin; otherwise they 

must appear in pair, to satisfy the exact symmetry of the model 

equations. This exact symmetry is interesting as it can be used to 
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