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a b s t r a c t 

In this paper, a spatial predator-prey model with self-defense mechanism that the prey species keep 

themselves away from the attack of the predator, which leads the existence of the cross diffusion in bio- 

logical communities, is investigated. Conditions for cross diffusion induced Turing instability are obtained 

by mathematical analysis. By the numerical simulations, five types of patterns such as hot/cold spots, 

hot/cold spots-stripes and stripes patterns emerge. Our study suggests that the interactions of self and 

cross diffusion have great effects on the mechanism for the emergence of complex dynamics in biological 

systems. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Originally proposed by Turing’s study in chemistry, pattern 

formation in reaction-diffusion system is widely investigated in 

many fields, such as modern ecology and biology [1–6] . For spatial 

patterns, they can identify the exact distributions in both space 

and time of the populations and may provide some insights on 

the evolution rules of the individuals. 

In particular, one typical example of the spatiotemporal model 

is predator-prey system. Spatial patterns are mainly used to 

understand the impacts of individual mobility on the stable and 

oscillatory states of species survival by using the reaction-diffusion 

equations, in which self diffusion stands for the random motions 

of species. Along this way, a lot of work has been done about 

spatial predator-prey model [7–12] . Holling–Tanner predator- 

prey spatiotemporal model [13,14] is one of the most famous 

predator-prey models. In line with ratio-dependent predator-prey 

model, another well-known proposal is Holling type III functional 

response [15] , which is the most important and useful functional 

response in population dynamics. In this paper, we consider the 

following Holling–Tanner predator-prey spatial model with Holling 

type III functional response: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

∂U 
∂T 

= rU 

(
1 − U 

K 

)
− mU 2 V 

aU 2 +1 
+ D 11 ∇ 

2 U, (x , t) ∈ � × (0 , ∞ ) , 
∂V 
∂T 

= θV 

(
1 − hV 

U 

)
+ D 22 ∇ 

2 V, (x , t) ∈ � × (0 , ∞ ) , 
∂U(x ,t) 

∂n 
= 

∂V (x ,t) 
∂n 

= 0 , (x , t) ∈ ∂� × (0 , ∞ ) , 

U(x , 0) = U 0 > 0 , x ∈ �, 

V (x , 0) = V 0 > 0 , x ∈ �, 

(1) 
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where U ( x , T ) and V ( x , T ) stand for prey and predator density 

respectively at x ∈ � and at time T, � is a bounded domain with 

a Lipschitz boundary ∂�. ∇ 

2 = 

∂ 2 

∂x 2 
+ 

∂ 2 

∂y 2 
is the usual Laplacian 

operator in space �∈ R 2 , which describes the random motion of 

both prey and predator. n is the outward unit normal vector on 

∂�. The zero-flux boundary condition indicates that no external 

input is imposed from outside. r, K, a, θ , m and h are all positive 

constants. r is the prey intrinsic growth rate and K the carrying 

capacity . m is capturing rate, a the half-saturation constant. θ is 

predator intrinsic growth rate, h the conversion rate of prey into 

predator biomass. D 11 and D 22 are the self diffusion coefficients 

for U and V respectively, which are nonnegative and describe the 

natural dispersive force of random motion of individuals. 

However, the tendency of the prey species will keep away from 

the predator species in order not to be caught, which made the 

concentration levels of prey change [16,17] . At the same time, 

the movement of the predator is affected by the gradient of the 

concentration of the prey at the same location. This phenomenon 

is described by cross diffusion mathematically [18–25] . As a result, 

in the present paper, we aim to study the effect of the cross 

diffusion on spatiotemporal dynamics of a predator-prey model 

with Holling type III functional response. Consequently, we have 

the following model: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

∂U 
∂T 

= rU 

(
1 − U 

K 

)
− mU 2 V 

aU 2 + 1 + D 11 ∇ 

2 U + D 12 ∇ 

2 V, (x , t) ∈ �×(0 , ∞ ) , 
∂V 
∂T 

= θV 

(
1 − hV 

U 

)
+ D 21 ∇ 

2 U + D 22 ∇ 

2 V, (x , t) ∈ �×(0 , ∞ ) , 
∂U(x ,t) 

∂n 
= 

∂V (x ,t) 
∂n 

= 0 , x ∈ ∂�×(0 , ∞ ) , 

U(x , 0) = U 0 > 0 , x ∈ �, 

V (x , 0) = V 0 > 0 , x ∈ �, 

(2) 
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where D 12 , D 21 are the cross diffusion coefficients of predator and 

prey respectively, which are either positive, negative, or zero. In 

this paper, we assume D 12 > 0 and D 21 < 0, which means that prey 

species tend to orient towards lower concentration of the predator 

species, and the predator species tend to move towards the higher 

concentration of the prey species. 

This paper is organized as follows. In Section 2 , we derive the 

conditions for the existence of positive equilibrium in the absence 

of both self diffusion and cross diffusion. In Section 3 , we analyze 

the model (2) and obtain the condition for emerging patterns. In 

Section 4 , we illustrate spatial patterns by performing a series of 

numerical simulation. Finally, some conclusions and discussions 

are given in Section 5 . 

2. Analysis of positive equilibrium 

In order to minimize the number of parameters involved in 

model (2) , we choose the scaling u = 

U 
K , v = 

mKV 
r , t = rT , then 

model (2) becomes ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂u 
∂t 

= u (1 − u ) − u 2 v 
εu 2 +1 

+ d 11 ∇ 

2 u + d 12 ∇ 

2 v , (x , t) ∈ � × (0 , ∞ ) , 

∂v 
∂t 

= v η
(
1 − γ v 

u 

)
+ d 21 ∇ 

2 u + d 22 ∇ 

2 v , (x , t) ∈ � × (0 , ∞ ) , 

∂u (x ,t) 
∂n 

= 

∂v (x ,t) 
∂n 

= 0 , (x , t) ∈ ∂� × (0 , ∞ ) , 

u (x , 0) = u 0 > 0 , x ∈ �, 

v (x , 0) = v 0 > 0 , x ∈ �, 

(3) 

where 

ε = aK 

2 , η = 

θ

r 
, γ = 

hr 

mK 

2 
, 

d 11 = 

KD 11 

r 
, d 12 = 

rD 12 

m 

2 K 

3 
, d 21 = 

mK 

3 D 21 

r 2 
, d 22 = 

D 22 

mK 

. 

We need to analyze the stability criteria of model (3) without 

diffusion. The corresponding model is { 

du 
dt 

= u (1 − u ) − u 2 v 
εu 2 +1 

:= f (u, v ) , 
dv 
dt 

= v η
(
1 − γ v 

u 

)
:= g(u, v ) . 

(4) 

Obviously, system (4) has equilibrium E 0 = (1 , 0) , which corre- 

sponds to extinction of the predator. From the biological point of 

view, we are interested in the interior equilibria points, which are 

the positive solutions of the following cubic polynomial equations 

of system (4) : 

u (1 − u ) = 

u 

2 v 
εu 

2 + 1 

, (5) 

v η
(

1 − γ v 
u 

)
= 0 . (6) 

Let the second equality in (5) replace the v of the first equality 

in (6) 

H(u ) := u 

3 + C 2 u 

2 + C 1 u + C 0 = 0 . (7) 

And C 2 = 

1 
γ ε − 1 , C 1 = 

1 
ε and C 0 = − 1 

ε < 0 . The number of real 

roots of F in the interval I 0 = (0 , 1) determines the number of 

equilibria in (4) . What is more, H 

′ (u ) = 3 u 2 + 2 C 2 u + C 1 has the 

following roots: 

S ± = 

γ ε − 1 ±
√ 

T 1 

3 εγ
, (8) 

and 

T 1 = (γ ε − 1) 2 − 3 εγ 2 ≥ 0 . (9) 

The discriminant of the cubic polynomial H is given by 

T 2 = 

(
L 

2 

)2 

+ 

(
K 

3 

)3 

, (10) 

where K = C 1 − C 2 
2 
/ 3 and L = (2 C 3 

2 
− 9 C 1 C 2 + 27 C 0 ) / 27 . 

We are interested in the positive equilibrium state E ∗ = (u ∗, v ∗) . 
Let E ∗( u ∗, v ∗) be any equilibrium of system (4) , where v ∗ = 

u ∗
γ . 

The Jacobian matrix of system (4) at E ∗( u ∗, v ∗) takes the following 

form 

J = 

( 

∂ f 
∂u 

∂ f 
∂v 

∂g 
∂u 

∂g 
∂v 

) 

(u ∗, v ∗) 

� 

(
f u f v 
g u g v 

)

= 

( 

−2 ε(u ∗) 3 −1+ ε(u ∗) 2 

ε(u ∗) 2 +1 
−(u ∗) 2 

ε(u ∗) 2 +1 
η
γ −η

) 

. (11) 

and the trace and determinant of matrix J are given by 

tr (J) = 

−2 ε(u 

∗) 3 + ε(u 

∗) 2 − 1 

ε(u 

∗) 2 + 1 

− η � f u + g v , (12) 

det (J) = 

ηu 

∗

ε(u 

∗) 2 + 1 

F ′ (u 

∗) � f u g v − f v g u . (13) 

The conditions to ensure the positive equilibrium state 

E ∗ = (u ∗, v ∗) to be stable are that: 

tr (J) < 0 , (14) 

det (J) > 0 . (15) 

3. Turing instability analysis of model (3) 

In this section, we will find the conditions for Turing instability 

of model (3) . For the sake of convenience, let E ∗( u ∗, v ∗) be anyone 

of the interior steady equilibrium. The characteristic polynomial at 

E ∗( u ∗, v ∗) is 

| λE − J k | = 0 , (16) 

where J k is given by 

J k = 

(
f u − d 11 k 

2 f v − d 12 k 
2 

g u − d 21 k 
2 g v − d 22 k 

2 

)
, (17) 

where k is a wavenumber and we obtain that the eigenvalue is 

the root of the following equation 

λ2 + A k λ + B k = 0 , (18) 

where 

A k = (d 11 + d 22 ) k 
2 − ( f u + g v ) , (19) 

B k = (d 11 d 22 − d 12 d 21 ) k 
4 − (d 22 f u + d 11 g v − d 12 g u − d 21 f v ) 

+ f u g v − f v g u . (20) 

Therefore, the solution of (18) is given by 

λk = 

−A k ±
√ 

A 

2 
k 

− 4 B k 

2 

. (21) 

Apart from a stable homogeneous state with the condition 

that det (J k ) is positive and tr( J k ) is negative, the condition for 

unstable steady state to heterogeneous perturbations leading to 

Turing patterns is that the real part of the eigenvalue, Re ( λk ), has 

to be bigger than zero. Obviously, A k is positive, so the condition 

reduces to that B k is negative for some value of k . That is 

d 22 f u + d 11 g v − d 12 g u − d 21 f v > 0 , (22) 

and 

(d 22 f u + d 11 g v − d 12 g u − d 21 f v ) 
2 

−4(d 11 d 22 − d 12 d 21 )( f u g v − f v g u ) > 0 . (23) 

Finally, we can get the condition of diffusion induced instabil- 

ity. In other words, if (14), (13), (22) and (23) are satisfied, then 

we can obtain the Turing patterns of model (3) . 
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