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a b s t r a c t 

The Inverse Scattering Transform (IST) method is applied to find soliton solutions for a higher-order non- 

linear Schrödinger (NLS) equation. Eigenfunctions of linearized operator which have a central role in soli- 

ton perturbation theory are explicitly found. 
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1. Introduction 

Partial Differential Equations (PDEs) have a central role in pure 

and applied sciences where a few ones have analytical solutions. 

Amongst those have analytical solutions soliton equations have 

vast application in physics, telecommunication and differential ge- 

ometry. Technically, soliton equation is a PDE with soliton solu- 

tion. A soliton has the property that tends to zero where the spa- 

tial variable approaches infinity. Recently, it has been shown that a 

soliton equation can be recognized due to be as the compatibility 

condition of a so-called Lax pair,i.e. , see Section 2 . Utilizing the Lax 

pair and applying the soliton property, the general soliton solution 

of an equation can be constructed. This method is so-called Inverse 

Scattering Transform (IST) which has been developed and applied 

for several soliton (integrable) equations. Subsequently, Ablowitz 

et al. [1] introduced a large class of integrable equations. For a de- 

tailed review of IST for nonlinear Schrödinger (NLS) equation and 

AKNS hierarchy, we refer the readers to Yang [8] . 

Adjusting the scattering operator associated with the hierarchy 

and determining the member index number in the AKNS proce- 

dure lets higher-order and vector integrable equations be easily 

constructed. For a practical example Doktorov et al. [6] considered 

an integrable matrix version related to NLS equation and showed 
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that it is equal to the integrable bright spinor Bose–Einstein con- 

densates model with integer spin F = 1 (after some re-scalings). 

The matrix NLS equation can be re-constructed via the AKNS 

where the related Lax pair is readily available and therefore IST 

can be developed to find soliton solutions. Ahmadi and Hoseini 

[2] also developed the soliton perturbation theory for the matrix 

NLS equation where the explicit forms of eigenstates of the re- 

lated linearized operator are needed. They proved that the closure 

set corresponding to the matrix NLS equation contains 8 localized 

(continuous) and 6 non-localized (discrete) eigenstates. 

The authors in [4] constructed a higher-order NL S (HNL S) equa- 

tion 

iu t = u xxxx + 4 | u x | 2 u + 8 | u | 2 u xx + 6 u 

∗u 

2 
x + 2 u 

2 u 

∗
xx + 6 | u | 4 u, (1) 

and examined weak interaction for two well-separate single soli- 

tons. Note that here “∗′ ′ represents complex conjugation. Similarity 

between (1) and scalar NLS equation lets the one-soliton solution 

of (1) be easily guessed. They determined the linearized operator 

around rank-one soliton solution and find explicitly all continuous 

and discrete eigenfunctions of the operator. Despite of complicated 

form of the operator it was shown that the eigenstates and also 

adjoint eigenstates are exactly the same as those related to NLS 

equation. 

One of the recent development in soliton theory is soliton per- 

turbation theory where the solitary wave solution of (small) cor- 

rection to the integrable equation can analytically be determined 

up to any order of perturbation importance factor. This requires 
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that the complete set of eigenfunctions for the linearized prob- 

lem, related to the nonlinear wave equation, be determined. Yang 

[7] constructed this set for a large class of integrable nonlinear 

wave equations such as the Kortewegde Vries (KdV), NLS and mod- 

ified KdV (mKdV) equations. The same procedure can be exploited 

to find the eigenstates of the adjoint linearization operator. He 

found that the eigenfunctions for these hierarchies are the squared 

Jost solutions. Chen and Yang [3] developed direct soliton pertur- 

bation theory for the derivative NLS and the modified NLS equa- 

tions. Using the similarity between the KdV and derivative NLS hi- 

erarchies they showed that the eigenfunctions for the linearized 

derivative NLS equation are the derivatives of the squared Jost so- 

lutions. This is in contrast to the counterpart for NLS, Hirota and 

mKdV hierarchies, where the eigenfunctions are just the squared 

Jost solutions. Suppressing the secular terms, they also found the 

slow evolution of soliton parameters and the perturbation-induced 

radiation. 

In the present paper, the IST is developed for HNLS (1) and it 

will be shown that an analogous manner for NLS equation can be 

exploited to find the soliton solutions. The reason for similarity is 

that the spatial equations of Lax pairs for NLS and HNLS (1) are ex- 

actly the same. The only different part of the procedure is the time 

evolution for soliton which is caused by different temporal equa- 

tions of Lax pairs. We adopt the notations in [8] through the pa- 

per to show that HNLS (1) can be treated as NLS equation despite 

its more complicated form. Using the spatial equation of Lax pair, 

we also find the squared eigenfunctions of the Zakharov–Shabat 

system and prove the closure relation for the eigen-states related 

to (1) and finally we find explicit forms of eigenfunctions for lin- 

earized operator and the adjoint. 

This paper contains 3 sections. In Section 2 , the IST proce- 

dure is reviewed for HNLS (1) using the explicit forms of Lax pair. 

We find the most general soliton solution and determine explicitly 

rank-one soliton solution as an example. In Section 3 , the squared 

eigenfunctions for the Zakharov-Shabat system related to HNLS 

(1) are found based on Jost solutions. These squared eigenfunc- 

tions contain those related to linearized operator and its adjoint. 

In Section 4 , the explicit forms of the eigenfunctions of the lin- 

earized operator around one-soliton solution are constructed. And 

finally, Section 5 concludes the results of the paper. 

2. IST for (1) 

It is well known that to establish a general soliton solution of 

a soliton equation via IST, a pair of ordinary differential equations 

(ODEs) named Lax pair is needed where their compatibility con- 

dition is the soliton equation. Thanks to pioneer work of Ablowitz 

et al. [1] , not only a large family of integrable equations has been 

found, but also their corresponding Lax pairs can easily be con- 

structed. We begin with Lax pair for HNLS (1) and mention its 

relationship with HNLS (1) . Note that HNLS (1) is the next even 

member of the NLS integrable hierarchy. 

If we define two ODEs (Lax pair) 

Y x = MY, Y t = NY, (2) 

where 

M = −iζ� + Q, N = −8 iζ 4 � + 8 ζ 3 Q + 4 iζ 2 V + R, 

and � = 

(
1 0 

0 −1 

)
, Q = 

(
0 u 

−u ∗ 0 

)
, V = 

(| u | 2 u x 
u ∗x −| u | 2 

)
, 

R = 

(| u x | 2 −uu 

∗
xx −u xx u 

∗−3 | u | 2 −(u xxx +6 | u | 2 u x ) 
−(u 

∗
xxx +6 | u | 2 u 

∗
x ) −(| u x | 2 −uu 

∗
xx −u xx u 

∗−3 | u | 2 ) 
)

, 

and ζ is scattering parameter, then the compatibility condition for 

(2) , i.e. , Y xt = Y tx gives 

M t − N x + [ M, N] = 0 , (3) 

which is HNLS (1) . Here 

[ M, N] = MN − NM, (4) 

is the commutator bracket. 

A soliton has a key property that decays to zero sufficiently fast 

as the spatial variable x approaches infinity. We shall use this prop- 

erty to find the fundamental solution of (2) . Therefore, is clear that 

Y ∝ exp {−iζ�x − 8 iζ 4 �t} as x −→ ±∞ . It is convenient that (2) be 

changed to 

J x = −iζ [�, J] + QJ, (5) 

J t = −8 iζ 4 [�, J] + (8 ζ 3 Q + 4 iζV + R ) J, (6) 

via 

Y = Je −iζ�x −8 iζ 4 �t , (7) 

where the Jost solution J is ( x, t )-independent at infinity. 

As the main step in IST we mainly focus on the first equation 

of (37) called Zakharov–Shabat system and time evolution of the 

solitons shall be done by applying the second ODE in (37) when 

they explicitly determined. As mentioned earlier, HNLS (2) shares 

its Zakharov–Shabat system with NLS and hence the spatial evolu- 

tion using IST procedure for equations will be analogous. We con- 

sider two Jost solutions J ± ( x, ζ ) of the scattering problem (5) , with 

the following asymptotic 

J ±(x, ζ ) −→ I, x −→ ±∞ , (8) 

where I is the 2 × 2 unit matrix. Note that we temporally forget “t ′ ′ 
from the notations. Abel’s identity shows that 

det J ±(x, ζ ) = 1 , (9) 

for all ( x, ζ ). As J ± E ( E = e −iζ�x ) are both solutions of the (linear) 

Zakharov–Shabat system, they are linearly related as J −E = J + ES, 

where S = S(ζ ) is called scattering matrix and the potential u can 

be retrieved from the elements of S . Consequently, the property 

(9) gives 

det S(ζ ) = 1 , ζ ∈ R . (10) 

Up to now, the scattering parameter ζ was considered on real 

line. Extending the analyticity of Jost solutions J ± ( x, ζ ) and there- 

fore S ( ζ ) to the ζ -complex half-planes provides the opportunity 

of applying Riemann–Hilbert Problem to construct the soliton so- 

lutions for HNLS (1) from the scattering data stored in S . For ex- 

ample, it can be shown that the first column of J − and the sec- 

ond column of J + can be analytically continued to the upper half 

plane ζ ∈ C + , while the second column of J − and the first column 

of J + can be analytically continued to the lower half plane C −, for 

a detailed review of application of Volterra integral equations see 

[8] and [9] . For simplicity, we let � = J −E and � = J + E and express 

( �, �) as a collection of columns and �−1 , �−1 as a collection of 

rows as 

�= (φ1 , φ2 ) , � = (ψ 1 , ψ 2 ) , �−1 = 

(̂ φ1 ̂ φ2 

)
, �−1 = 

(̂ ψ 1 ̂ ψ 2 

)
. (11) 

Finally, collecting the functions with same analyticity areas yields 

that the Jost solutions 

P + = (φ1 , ψ 2 ) e 
iζ�x = J −H 1 + J + H 2 , 

where H 1 ≡ diag(1 , 0) , H 2 ≡ diag(0 , 1) , (12) 

are analytic in ζ ∈ C + , and in a similar consideration the Jost so- 

lutions 

P − = e −iζ�x 

(̂ φ1 ̂ ψ 2 

)
= H 1 J 

−1 
− + H 2 J 

−1 
+ (13) 
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