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a b s t r a c t 

Recent works in econophysics have quantitatively shown that the latest global financial crisis has consid- 

erably affected nonlinear dynamics in markets worldwide. In the current study, we focus on complexity 

in volatility time series during pre-crisis, crisis, and post-crisis time periods. In this regard, a large set of 

international stock and commodity markets as well as economic uncertainty indices is considered in our 

work. The main finding is that empirical distributions of long memory parameter, Kolmogorov complexity 

and Shannon entropy, have all varied across pre-crisis, crisis, and post-crisis time periods. In other words, 

all three complexity measures are informative and suitable in order to characterize nonlinear dynamics in 

volatility series throughout the examined sample periods. Indeed, it was found that complexity increased 

during crisis period, yet diminished during the pre-crisis period. Overall, the latest financial crisis has 

truly affected complexity revealed in the volatility time series of the world major markets. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

In quantitative finance, volatility plays an important role in ex- 

plaining sharp daily fluctuations in stock prices, determining the 

probability of bankruptcy, determining the bid-ask spread, hedging 

portfolio, quantifying risk, and capital allocation [1] . In this regard, 

interesting studies have been conducted in recent years to examine 

multifractal in volatility [2,3] , cross-correlations between volatility, 

volatility persistence and stock market integration [4] , option pric- 

ing using volatility [5] , volatility clustering [6] , and volatility fore- 

casting [7,8] . A major event in the last ten years is the global finan- 

cial crisis that affected financial markets worldwide. Indeed, recent 

works have shown that it has significantly affected and shaped 

dynamics of capital and commodity market [9,10] , co-dynamics 

in stock markets [11] , and linkages across fertilizer markets [12] . 

Other appealing studies have found that recent global financial cri- 

sis affected the degree of asymmetric multi-fractality in the U.S. 

stock indices [13] , the correlation structure of the stocks compos- 

ing the S&P price index [14] , fragility of global financial market 

network [15] , clustering of global foreign exchange markets [16] , 

and global interbank market network connectivity [17] ; to name 

few. 
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The main purpose of the current work is to study nonlinear 

dynamics in volatility of a large set of financial, exchange, and 

commodity markets before, during and after recent world global 

financial crisis. Indeed, this issue has received a limited interest 

in econophysics literature. For instance, it was found that US sub- 

prime crisis distressed the behaviour of volatility of the sovereign 

credit default swap index [18] , increased volatility of S&P500, 

KOSPI, and DAX during crisis [19] , made volatility of crude oil mar- 

kets less predictable [20] , and increased level of volatility and re- 

sponses to chocks in fertilizer markets [21] . 

Therefore, our contributions to the literature are as follows: 

First, we examine how long memory in volatility of financial and 

commodity markets was affected by global financial crisis. Second, 

we aim to look at how complexity in volatility series has been af- 

fected during and after crisis. Third, shapes in randomness through 

time periods are also investigated. In fact, long memory, complex- 

ity, and randomness are three different measures borrowed from 

analysis of nonlinear dynamical systems [22] . Definitely, by ex- 

amining shapes in self-similarity, complexity, and randomness, a 

general description of nonlinear dynamics in volatility series can 

be obtained through different time periods to better understand 

how global financial crisis influenced volatility of world major mar- 

kets. Fourth, a large set of various stock, exchange, and commod- 

ity markets is considered. Fifth, various robust statistical tests will 

be applied to check whether fractality, complexity, and random- 

ness in volatility series have been changed across pre-, during, and 

post-crisis time periods. Sixth, our study will surely enrich econo- 

physics literature on the subject by examining nonlinear dynam- 
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ics of volatility in twenty four international stock markets, three 

exchange markets, and ten commodity markets. Furthermore, in 

order to enrich our work, volatility time series in volatility index 

(VIX) of the Chicago Board Options Exchange (CBOE) and in the 

United States economic policy uncertainty index (EPU) are also ex- 

amined. For instance, the former is a gauge of market expectations 

and investor sentiment used by numerous investors in trading in- 

struments related to the market’s expectation of future volatility; 

and, the latter is a proxy of policy-related economic uncertainty. 

In fact, it is interesting to study nonlinear dynamics in volatility 

time series of VIX and EPU in times of crisis to better understand 

their effects on investor’s expectations related to trading instru- 

ments and their effects on policy-maker decisions related to busi- 

ness cycle. In short, thirty nine different volatility series are under 

study in our investigation related to most recent global financial 

crisis. Indeed, it is worth to provide a framework to significantly 

better understanding of shifts in nonlinear dynamics of world ma- 

jor financial time series volatilities. 

The paper is organized as follows; the Methodology is described 

in Section 2 . Data and empirical results are presented in Section 3 . 

Finally, Section 4 concludes. 

2. Methodology 

In order to assess nonlinear dynamics in volatility time se- 

ries, we basically rely on estimating three complexity measures; 

namely long range parameter denoted d estimated by fractionally 

integrated generalized autoregressive conditional heteroskedastic- 

ity (FIGARCH) process [23] , Kolmogorov complexity ( KC ) [24] , and 

Shannon entropy ( SE ) [25] . For instance, long range parameter d is 

used to quantify long-memory in volatility of the underlying time 

series, KC is appropriate to capture the amount of information in 

an object (or time series) by measuring the length of a description 

of that object [24] , and SE is appropriate to assess randomness in a 

given signal. All these estimates are in fact used to describe com- 

plexity in volatility time series. They are described next. 

2.1. The FIGARCH model 

Assume that the conditional variance of a given time series 

obeys the following classical generalized autoregressive conditional 

heteroskedasticity (GARCH) model [26] : 

σ 2 
t = ω + α( L ) ε 2 t + β( L ) σ 2 

t (1) 

where εt = y t − E t −1 [ y t ] is the prediction error of the time series 

y, E [ �] is the expectation operator, σ is the conditional variance, 

ω > 0, α ≥ 0, β ≥ 0, L is the lag operator, and: 

α( L ) ≡ α1 L + α2 L 
2 + · · · + αq L 

q (2) 

β( L ) ≡ β1 L + β2 L 
2 + · · · + βp L 

p (3) 

Whilst GARCH( p,q ) is appropriate to describe short-memory 

in volatility of time series, the FIGARCH( p,d,q ) model [23] was 

initiated to gauge long memory in volatility. Especially, the FI- 

GARCH( p,d,q ) model is given by: 

φ( L ) ( 1 − L ) 
d ε 2 t ≡ ω + [ 1 − β( L ) ] νt (4) 

where, νt = ε 2 t − σ 2 
t and 0 < d < 1 is the fractional difference (long 

range) parameter used to capture long memory in volatility series. 

In our study, the FIGARCH(1, d ,1) model is estimated by using the 

quasi-maximum likelihood method as proposed in [27] . It is worth 

noting that FIGARCH(1, d ,1) is a popular statistical process used to 

estimate long memory in volatility time series as it is valuable and 

flexible model [28,29] . 

2.2. Kolmogorov complexity 

The Kolmogorov complexity ( KC ) [24] also known as the algo- 

rithmic complexity is a non-probabilistic measure used to quan- 

tity the amount of information contained in a given time series. 

In particular, KC is basically the length of the shortest algorithm 

capable of reproducing the underlying time series. Lempel and Ziv 

[30] proposed an algorithm to calculate KC . For instance, let con- 

sider a time series { x t } n t=1 
. Then, a sequence { s (i ) } n 

i =1 
of strings 

0 and 1 is constructed where s ( i ) = 0 when x i < x ∗, s ( i ) = 1 when 

x i ≥ x ∗, and x ∗ is a threshold. Then, KC ( n ) is given by: 

KC ( n ) = c ( n ) 
log ( n ) 

n 

(5) 

where c ( n ) is the minimum number of distinct patterns contained 

in sequence s ( i ) of length n . Asymptotically, 0 ≤ KC ( n ) ≤ 1. In this 

regard, values of 0 and 1 indicate respectively regular and ran- 

dom series. In the current work, threshold used to construct binary 

symbol sequences is the mean of the time series. 

2.3. Shannon entropy 

Shannon entropy [25] is denoted SE in this work and it is em- 

ployed in order to measure the degree of randomness in volatility 

time series. Assuming a time series { x t } n t=1 
, the Shannon entropy is 

expressed as follows: 

SE ( x ) = −
∑ n 

y =1 
p i log ( p i ) (6) 

where p i is a discrete probability such that 
∑ 

i p i = 1 . For instance, 

the Shannon entropy ( SE ) reach maximum when all values of the 

underlying time series time series { x t } n t=1 
are equally probable. In 

this regard, when SE approaches log( n ), then, the underlying time 

series is nearly random. In contrary, SE reached minimum when a 

single x i is certain to occur. For example Prob ( x i ) = 1. 

Finally, after having estimated long memory parameter d , Kol- 

mogorov complexity ( KC ), and Shannon entropy ( SE ) of each vari- 

ance time series, two-sample t -test [31] and two-sample Kruskal–

Wallis ( K - W ) test [32] – are used respectively to test the null hy- 

pothesis of equality of the means and null hypothesis of equality of 

the medians - are applied to each pair of estimated populations of 

complexity measures through time periods. For instance, the goal 

is to check whether estimated parameters d in pre-crisis period are 

statistically different from those in crisis time period. Similarly, one 

can test whether estimated parameters d in crisis time period are 

statistically different from those in post-crisis time period. Equally, 

we also test whether estimated parameters d in pre-crisis time pe- 

riod are statistically different from those in post-crisis time period. 

In fact, the purpose of statistical test is to verify if the populations 

of estimated complexity measures have been shifted trough pre-, 

during, and post-crisis time periods. All previous statistical tests 

will be performed at 5% statistical significance level. 

3. Data and empirical results 

We use daily data covering the time period from 22 August 

2003 to 1 March 2007 (pre-crisis), 2 March 2007 to 21 September 

2012 (crisis), and 24 September 2012 to 17 May 2017 (post-crisis). 

The data includes twenty four stock markets, three exchanges mar- 

kets, ten commodity markets, and two financial and economic un- 

certainty indices, all obtained from Datastream international. Inter- 

national stock markets include NYSE of USA, FTSE of UK, CAC40 of 

France, DAX30 of Germany, Nikkei225 of Japan, S&P/TSX of Canada, 

Hang Seng of China, IBEX35 of Spain, ATHEX of Greece, BEL20 of 

Belgium, SWITZ of Switzerland, PSI of Portugal, MIB of Italy, TAIEX 

of Taiwan, S&P/ASX 200 of Australia, ISEQ of Ireland, S&P BSE of 
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