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In this paper, we establish the existence of a unique global positive solution for a stochastic epidemic 

model, incorporating media coverage and driven by Lévy noise. We also investigate the dynamic proper- 

ties of the solution around both disease-free and endemic equilibria points of the deterministic model. 

Furthermore, we present some numerical results to support the theoretical work. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

One of the deadliest threats to human lives is infectious dis- 

eases, in fact they cause more deaths than cancer. Understand- 

ing the way of the spread of those diseases is very important 

in the fight against the disease itself [3,4,7,30] . Media coverage 

is one of the most used tools to try to control epidemic spread- 

ing [35] . There is much evidence that media coverage can play an 

appreciable role in the spread and control of infectious diseases 

[13,14,23,25,26,29] . It plays an important role in helping the gov- 

ernment authority to make interventions to prevent the disease 

[8,9] . When an epidemic begins its propagation in a country, the 

departments of health and of disease control and prevention take 

necessary means to prevent the disease to spread wildly in the 

population. One of the measures taken by the government in this 

matter is to teach the people to act appropriately in these cases 

using eduction and media [13,14,23,25,32,38] . Mass media have the 

potential to influence the behavior of the population, they are usu- 

ally used to deliver preventive health messages in order to take 

precautions and to avoid negative behavior due to panic and also 
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to present recent information about the disease. In fact, several 

surveillance organisms rely on the internet and news media to de- 

tect upcoming epidemic threats [34] . Recently, various mathemat- 

ical models have been used to investigate the impact of the me- 

dia coverage. Cui et al. [23] , Tchuenche et al. [36] , and Sun et al. 

[34] used deterministic models to investigate the effects of media 

coverage on the transmission dynamics. 

In this paper, we are interested in a SIRS epidemic model 

[10,21,37] . The population is divided into three compartments, de- 

pending on the epidemiological status of individuals: susceptible 

( S ), infectious ( I ) or recovered ( R ). The susceptible population is in- 

creased by recruitment of individuals or by loss of immunity of 

recovered individuals, and reduced by infection of susceptible in- 

dividuals or natural death. The population of infected individuals 

is increased by infection of susceptible and diminished by natu- 

ral death and recovery from the disease. The recovery class is in- 

creased by individuals recovering from their infection and is de- 

creased as individuals succumb to natural death or loss of im- 

munity. In the absence of media effect, we assume the incidence 

rate to be mass action incidence with bilinear interaction given 

by β1 SI , where β1 is the probability of transmission per contact. 

However some factors such as media coverage manner of life and 

density of population may affect the incidence rate. When media 

coverage is present, social distancing mechanisms come into effect. 
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The reporting by media is assumed to be an increasing function of 

the number of infectious cases, and as a consequence, the contact 

rate between susceptible and infectious individuals is a decreasing 

function of the number of infectious cases. Hence, we consider 

the following nonlinear incidence which reflects some characters 

of media coverage 

g(S, I) = (β1 − β2 I 

α + I 
) SI, 

where β1 , is the maximal effective contact rate before media alert, 

β2 is the maximal effective contact rate due to mass media alert 

in the presence of infective and the half saturation α > 0 reflects 

the reactive velocity of individuals and media coverage to epidemic 

disease. The resulting deterministic SIRS epidemic model incorpo- 

rating media coverage can be modelled as follows: 

dS = [� − (β1 − β2 I 

α + I 
) SI − μS + λR ] dt, 

dI = [(β1 − β2 I 

α + I 
) SI − (μ + γ ) I] dt, 

dR = [ γ I − (μ + λ) R ] dt, (1.1) 

where, the real positive parameters �, μ, γ , λ, have the following 

features: � is the total number of the susceptible, μ represents 

the natural death rate, γ represents the rate of recovery from in- 

fection and λ is the rate of temporary immunity. The function 

I 
α+ I 

is a continuous bounded function that takes into account disease 

saturation or psychological effects. The terms 
β2 I 
α+ I measures the ef- 

fect of reduction of the contact rate when infectious individuals 

are reported in the media. Because the coverage report can slow 

but cannot prevent disease from spreading completely, we have 

β1 ≥β2 > 0. The basic reproduction number [12,15] for this model 

is given by 

R 0 = 

β1 �

μ(μ + γ ) 
. 

It is a threshold quantity which determines whether an epidemic 

occurs or the disease simply dies out. In the few past years, epi- 

demic models with stochastic perturbation [16,17,19,22,24,45] have 

emerged as an interesting topic. Among authors who studied 

stochastic models with white noise incorporating media coverage 

we cite Cai et al. [11] , where effects of stochastic dynamics of 

an SIS model incorporating media coverage were investigated. Lui 

and Zheng [27] investigated the stochastic disease dynamics of an 

SIS epidemic model on two patches incorporating media coverage. 

Zhao et al. [44] studied the basic dynamical features of a stochastic 

SIR epidemic model incorporating media coverage. All these mod- 

els were perturbed by white noise. However, the jumps play a sig- 

nificant role in evolution of many real dynamical processes [39–

43] , including the case of epidemic spreading like when encoun- 

tered with massive diseases like avian influenza. In this paper we 

are interested in a stochastic SIRS epidemic model incorporating 

media with a more general perturbation, as following 

dS = 

[
� −

(
β1 − β2 I 

α + I 

)
SI − μS + λR 

]
d t + σ1 Sd W 1 

+ 

∫ 
Y 

q 1 (y ) S(t−) ̃  N (d t, d y ) , 

dI = 

[(
β1 − β2 I 

α + I 

)
SI − (μ + γ ) I 

]
d t + σ2 Id W 2 

+ 

∫ 
Y 

q 2 (y ) I(t−) ̃  N (d t, d y ) , 

dR = [ γ I − (μ + λ) R ] d t +σ3 Rd W 3 + 

∫ 
Y 

q 3 (y ) R (t−) ̃  N (d t, d y ) , (1.2) 

where Wi ( t ) are independent standard Brownian motions de- 

fined on a complete probability space (�, F , P ) with the filtration 

(F t ) t≥0 , satisfying the usual conditions, X(t−) is the left limit of 

X ( t ), N ( dt, dy ) is a Poisson counting measure with the stationary 

compensator ν( dy ) dt , ˜ N (d t, d y ) = N(d t, d y ) − ν(d y ) d t and ν is de- 

fined on a measurable subset Y of [0, ∞ ) with ν( Y ) < ∞ and σ i ≥ 0 

represent the intensities of W i ( t ), q i (y ) > −1 , i = 1 , 2 , 3 . Our study 

will be as follow: in the second section, we study the existence and 

uniqueness of the global positive solution to model (1.2) , the third 

section is devoted to studying the behavior of the solution to the 

system (1.2) around the disease-free equilibrium E 0 , in the fourth 

section we study the behavior of the solution to (1.2) around the 

endemic equilibrium E ∗ and, in the final part, we will present some 

numerical results supported by real scenarios. 

Throughout this paper, we define the operator L associated with 

the following 3-dimensional stochastic differential equation (SDE) 

dX = φ(t, X (t)) dt + ψ(t, X (t)) dW t + 

∫ 
Y 

H(t, y ) ̃  N (d t, d y ) , 

by 

LX (t−) = 

3 ∑ 

i =1 

∂X (t−) 

∂x i 
φi (t, X )+ 

1 

2 

3 ∑ 

i, j=1 

∂ 2 X (t−) 

∂ x i ∂ x j 
[ ψ 

T (t, X ) ψ(t, X )] i j 

+ 

∫ 
Y 

[
(X (t−) + H(t, y )) − X (t−)− ∂X (t−) 

∂x i 
H(t, y ) 

]
ν(dy ) , 

where X = (x 1 , x 2 , x 3 ) . If L acts on a function F ∈ C 1 , 2 (R + × R 

3 ) , 

then 

LF (X (t)) = F x (X (t−)) φ(t, X ) 

+ 

1 

2 

trace (ψ 

T (t, X (t−)) F xx ψ(t, X (t−)) 

+ 

∫ 
Y 

F (X (t−) + H(t, y )) − F (X (t−)) 

− F x (X (t)) H(t, y ) ν(dy ) , 

where 

F x = 

(
∂F 

∂x 1 
, 

∂F 

∂x 2 
, 

∂F 

∂x 3 

)
, F xx = 

(
∂ 2 F 

∂ x i ∂ x j 

)
3 ×3 

Then by ItÃ’s formula we obtain 

dF (X (t)) = LF (X (t−)) dt + F x (X (t−)) ψ(t, X ) dW s 

+ 

∫ 
Y 

[ F (X (t−) + H(t, y )) − F (X (t−))] ̃  N (d s, d y ) , 

Remark 1.1. For the Itô formula for semimartingales with jumps 

we refer to [5,31,33] for more details. 

2. Global positive solution of the system (1.2) 

The next theorem ensures the existence and uniqueness of the 

global positive solution. 

Theorem 2.1. For any given initial value (S(0) , I(0) , R (0)) ∈ R 

3 + , 
then the model (1.2) has a unique global solution (S(t) , I(t) , R (t)) ∈ 

R 

3 + for all t ≥ 0 almost surely. 

Proof. The drift and the diffusion being locally Lipschitz, then for 

any given initial value (S(0) , I(0) , R (0)) ∈ R 

3 + , there is a unique lo- 

cal solution ( S ( t ), I ( t ), R ( t )) for t ∈ [0, τ e ), where τ e is the explosion 

time. To show that this solution is global, we need to show that 

τe = ∞ a.s. At first, we prove that S ( t ), I ( t ), R ( t ) do not explode to 

infinity in a finite time. Let m 0 > 0 be sufficiently large so that S (0), 

I (0), R (0) lies within the interval [ 1 
m 0 

, m 0 ] . For each integer m ≥ m 0 , 

we define the stopping time: 

τm 

= inf 

{ 

t ∈ [0 , τe ) /S(t) / ∈ 

(
1 

m 

, m 

)
or I(t) / ∈ 

(
1 

m 

, m 

)
or R (t) / ∈ 

(
1 

m 

, m 

)} 

, 
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