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a b s t r a c t 

In this study, a new reaching rule in the Sliding Mode Control (SMC) is proposed for chaos control and 

synchronization. It is applied on the nonlinear Chua’s circuit. The SMC signals are provided with the 

Lyapunov stability theory. Classical, cubic and partial cubic variants of SMC signals are constructed. Nu- 

merical simulations are performed to compare the effectiveness of the SMC signals and the results are 

discussed. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Chaos control is suppressing the chaotic motions and stabilizing 

towards an equilibrium point. Control of chaotic systems is applied 

when chaos is undesirable. Chaos synchronization is matching the 

state vectors of either two identical chaotic systems which start 

from different initial values or two non-identical chaotic systems. 

Synchronization of chaotic systems is useful in encryption, secure 

communication, etc. Researchers have become interested in con- 

trolling and synchronizing chaotic systems after the pioneering ef- 

forts of Ott, Grebogi and Yorke on chaos control [1] and Pecora and 

Carroll on chaos synchronization [2] in 1990. Thus, they become 

significant issues on the control engineering field. At present, some 

effective methods are using for the control and synchronization of 

chaotic systems such as active control [3] , SMC [4–9] , adaptive con- 

trol [10] , linear feedback control [11] , nonlinear feedback control 

[12] , time-delay feedback control [13] , passive control [14] , back- 

stepping design [15] , predictive control [16] , and impulsive control 

[17] . Among these control methods, the SMC theory is often pre- 

ferred by many researchers in chaos control and synchronization 

because of the reachability conditions which can be defined in dif- 

ferent ways. It can be described as a nonlinear control technique 
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that tries to hold the response of the variable structure systems 

on a sliding surface by switching the signals. It is characterized 

by having the ability to control uncertainty in a system with good 

dynamic characteristics, less control and synchronization time, ro- 

bustness and insensitiveness to external variations, among other 

attractive benefits. More detailed information about the theory of 

SMC method can be reached from many papers in the literature 

[4–9] . 

Electronic circuits are linear or nonlinear characteristics 

paradigms. In the last two decades, researchers have proved that 

almost all of the electronic and electric circuits display chaotic be- 

haviors in specific conditions linked to the initial values, input sig- 

nals and chosen parameters. Electronic circuit analysis and mathe- 

matical evaluation are fairly difficult as opposed to solving nonlin- 

ear differential equations. In this regard, Chua’s circuit [18] is one 

of the famous chaotic attractors. It is a simple electronic circuit. 

There are also some different versions called modified Chua’s cir- 

cuits [19–21] , cubic Chua oscillator [22] , n -scroll Chua’s circuit [23] , 

hyperchaotic Chua systems [24–26] , etc. Furthermore, there are 

plenty of papers investigating the control of Chua chaotic systems. 

Linear feedback control [27] , nonlinear control [28,29] , impulsive 

control [30] , adaptive control [31] , and SMC [32–37] methods are 

applied for the control of Chua chaotic systems. SMC signals are 

used for both the original Chua’s circuit [32–35] and the other 

versions [36, 37] . Besides this, the synchronization of the original 

Chua’s circuit is implemented via piecewise linear coupling [38] , 

impulsive control [30,39] , and nonlinear control [40] methods. 
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Fig. 1. The Chua’s circuit. 

Some sliding mode variants such as proportional-integral based 

adaptive SMC [41] , integral SMC [42] , and active SMC [43] methods 

are also used for the original Chua’s circuit. However, the synchro- 

nization of Chua oscillators is achieved through the SMC method 

[44,45] , but all of them deal with the modified versions of Chua 

attractors. 

In this study, focusing on the Chua’s circuit, its chaotic behavior 

is described; its control and synchronization are applied accord- 

ing to the solutions of nonlinear differential equations through the 

SMC method. Cubic and partial cubic SMC signals are proposed 

as a novel access rule. The aim of this study is to show that the 

proposed cubic reaching rule can be more effective in the SMC 

for controlling and synchronizing the chaos. The well-known Chua 

chaotic system is preferred in the simulations. The rest of this pa- 

per is arranged as follows: A brief explanation of Chua’s circuit and 

its differential equations are provided in Section 2 . Then, its control 

and synchronization are applied by using SMC method with the 

classical and cubic SMC signal variants in SectionS 3 and 4 , respec- 

tively. After, numerical simulations are demonstrated in Section 5 . 

Finally, conclusions are presented in Section 6 . 

2. Definition of Chua’s circuit 

The Chua’s circuit is one of the well-known simple physical sys- 

tems which displays chaotic phenomena. In Fig. 1 , the Chua’s cir- 

cuit is shown. It is composed by an inductor, a linear resistor, two 

capacitors, and a three-segment nonlinear resistor [18] . The non- 

linear resistor is also called as Chua’s diode. 

The dimensionless form of the Chua’s system is described as 

[18] : { 

˙ x = α(y − x − f (x )) , 
˙ y = x − y + z, 
˙ z = −βy, 

(1) 

where x, y , and z are the state variables which represent the volt- 

ages across the capacitors C 1 and C 2 , and the intensity of electrical 

current in the inductor L , respectively. α > 0 and β > 0 are the 

constant parameters that are defined by the certain values of the 

circuit elements. The electrical response of the nonlinear resistor 

element is described by f ( x ) function. Its value depends on the par- 

ticular configuration of the components. It is generally defined as 

f (x ) = bx + 

1 

2 

(a − b)( | x + 1 | − | x − 1 | ) , (2) 

where a and b are real constants. For a specific value of the pa- 

rameters such as α = 15.6, β = 25.58, a = –8/7, and b = –5/7 with the 

initial value (0, 0, 0.6), the Lyapunov exponents for system (1) are 

λ1 ≈ 0.3271, λ2 ≈ 0, and λ3 ≈ 2.5197 [18] , which makes the 

Chua’s circuit chaotic. Its Kaplan–Yorke dimension is D KY ≈ 2.1298 

[46] . The three-dimensional phase plane of Chua chaotic system is 

Fig. 2. The Chua chaotic system in three-dimensional phase plane. 

shown in Fig. 2 . Due to its shape in the ( x, y, z ) space, Chua chaotic 

system is also known as “double scroll”. 

The equilibrium points of Chua chaotic system can be found by 

assuming ˙ x = 0, ˙ y = 0, and ˙ z = 0, and solving the equations of sys- 

tem (1) as in the following: { 

α(y − x − bx − 0 . 5(a − b)( | x + 1 | − | x − 1 | )) = 0 , 

x − y + z = 0 , 

−βy = 0 . 

(3) 

Therefore, the Chua chaotic system has only one equilibrium 

point: E 0 (0, 0, 0). 

3. Control 

The Chua chaotic system defined by Eq. (1) can be rewritten by 

adding the control signals as follows: { 

˙ x = α(y − x − f (x )) + u 1 , 

˙ y = x − y + z, 
˙ z = −β y + u 2 , 

(4) 

where u 1 and u 2 are the control signals applied to the system. 

They will be determined according to the SMC theory. 

SMC is a specific type of variable structure system defined by a 

decision rule and a number of feedback control laws. The purpose 

of this control method is to develop the control laws that give an 

ideal sliding motion on the surface. 

The system described in Eq. (1) has only one equilibrium point 

at zero, so the error dynamics of system (4) are expressed as: { 

˙ e 1 = α( e 2 − e 1 − f ( e 1 )) + u 1 , 

˙ e 2 = e 1 − e 2 + e 3 , 
˙ e 3 = −βe 2 + u 2 . 

(5) 

It is seen that ˙ e 2 = –e 2 when e 1 and e 3 are zero in the error 

dynamics defined by Eq. (5) . This means that, the error dynamic e 2 
will converge to zero ( e 2 → 0) when time goes to infinite ( t → ∞ ). 

Thus, suitable sliding surfaces can be written as follows: {
s 1 = e 1 + k 1 e 2 , 
s 2 = e 3 + k 2 e 2 , 

(6) 

where k 1 and k 2 must be chosen as positive constant parameters. 

The reachability condition for sliding mode is s ̇ s < 0. To fulfill 

this condition, the SMC signals can be taken as {
u 1 = −α( e 2 − e 1 − f ( e 1 )) − k 1 ( e 1 − e 2 + e 3 ) − k 3 s 1 − k 4 sign ( s 1 ) , 
u 2 = βe 2 − k 2 ( e 1 − e 2 + e 3 ) − k 3 s 2 − k 4 sign ( s 2 ) , 

(7) 

where k 3 and k 4 are constant parameters. Large values of k 3 de- 

crease the time to reach the sliding surface but lead to chattering; 
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