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a b s t r a c t 

In this paper, we studied an epidemic model consisting of two strains with vaccine for each strain. The 

model consist of four equilibrium points; disease free equilibrium, endemic with respect to strain 1, en- 

demic with respect to strain 2, and endemic with respect to both strains. 

The global stability analysis of the equilibrium points was carried out through the use of Lyapunov 

functions. Two basic reproduction ratios R 1 and R 2 are found, and we have shown that, if both are less 

than one, the disease dies out, if one of the ratios is less than one, epidemic occurs with respect to 

the other. It was also shown that, any strain with highest basic reproduction ratio will automatically 

outperform the other strain, thereby eliminating it. Condition for the existence of endemic equilibria was 

also given. 

Numerical simulations were carried out to support the analytic results and to show the effect of 

vaccine for strain 1 against strain 2 and the vaccine for strain 2 against strain 1. It is found that the 

population for infectives to strain 2 increases when vaccine for strain 1 is absent and vice versa. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Influenza virus are segmented, negative- sense, enveloped RNA 

viruses [1] . In most cases it is confused with the common cold, 

but influenza is much more severe disease. It is of three types; A, 

B and C. Influenza A has antigenic variability which allows it to es- 

cape neutralization from anti- bodies [2] . Influenza B internal pro- 

teins also exhibits antigenic variability property, but less than that 

of A. This property is not common in Influenza C, hence Influenza 

A is more serious than B, and then C [3] . 

In the 20th century, three influenza pandemics appeared and 

tens of millions of people died. One of the flu which is known as 

a Spanish flue effected more than 50 million people. Moreover in 

1957–1958 two million people died, and in 1968 one million peo- 

ple died from the disease [4] . Only in 2009 H1N1 virus pandemic 

was estimated to have caused more than 20 0,0 0 0 deaths during 

the first 12 months of its circulation [5] . 

There are many methods of preventing the spread of infectious 

disease, one of them is vaccination. Vaccination is the adminis- 

tration of agent-specific, but relatively harmless, antigenic compo- 

nents that in vaccinated individuals can induce protective immu- 

nity against the corresponding infectious agent [6] . 

Many researches exist in literature on mathematical models of 

Influenza virus. Some of them concentrate on the dynamics of 
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the disease [7–9] , vaccine and immunization [10–16] . Since in- 

fluenza virus are of many forms, some researches are on multiple 

strain influenza virus [17–22] . Rahman and Zou [23] constructed a 

model on the dynamics of two strain Influenza virus with a single 

vaccine. 

In this paper, we consider two strain influenza model with two 

vaccination in which strain 2 is the mutation of strain 1. A muta- 

tion is the sudden change in the genetic makeup that occurs ei- 

ther due to mistakes when DNA is copied or as a result of envi- 

ronmental factors. Here strain 2 was assumed to be as a result of 

changes in the proteins that made up strain 1. Proper vaccine ad- 

ministration is a critical component of a successful influenza con- 

trol program. It is a key part of ensuring that vaccination is as safe 

and effective as possible. Unfortunately, it is easy to make vaccine 

administration error. Although some improperly administered vac- 

cines may be valid, sometimes such errors open the possibility of 

patients being unprotected against the disease. In this paper we 

want to study the effects of administering vaccine for strain 1 (V1) 

against strain 2, and administering vaccine for strain 2 (V2) against 

strain 1. 

The paper is organized as follows: In Section 2 we formu- 

late the two strain influenza model with vaccination compart- 

ments with respect to strain 1 and strain 2. In Section 3 , we 

determined all possible equilibria, basic reproduction ratios and 

we determine the global stabilities for the equilibrium points. In 

Section 4 , Numerical Simulations are given to support the ana- 

lytic results. Lastly, in Section 5 , conclusions and discussions are 

given. 
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Table 1 

Variables and parameters. 

Parameter Description 

� Recruitment of individuals 
1 
μ Average time of life expectancy 

r 1 Rate of vaccination with strain 1 

r 2 Rate of vaccination with strain 2 

k 1 Transmission coefficient of vaccinated individuals V 1 to strain 2 

k 2 Transmission coefficient of vaccinated individuals V 2 to strain 1 

β1 Transmission coefficient of susceptible individuals to strain 2 

β2 Transmission coefficient of susceptible individuals to strain 1 
1 
γ1 

Average infection period of strain 1 
1 
γ2 

Average infection period of strain 2 

v 1 Infection induced death rate of strain 1 

v 2 Infection induced death rate of strain 2 

Fig. 1. Transfer diagram of model (1) . 

2. The model 

2.1. Structure of the model 

The population N(t) is divided into six compartments by modi- 

fying the model of [14] . The compartments are S , V 1 , V 2 , I 1 , I 2 and 

R , which denotes the sizes of susceptible, immunized with the vac- 

cination for strain 1, immunized with the vaccination for strain 2, 

infected with strain 1, infected with strain 2 and recovered com- 

partments respectively. 

We assume that there is equal birth and equal death in the 

population, and we assume that there is no double infection. The 

variables and parameters are positive and their meanings are given 

in Table 1 , Fig. 1 also gives the transfer diagram of the model. With 

these assumptions the model is given by a system of ordinary dif- 

ferential equations: 

dS 

dt 
= � − ( β1 I 1 + β2 I 2 + λ) S 

d V 1 

dt 
= r 1 S − ( k 1 I 2 + μ) V 1 

d V 2 

dt 
= r 2 S − ( k 2 I 1 + μ) V 2 

d I 1 
dt 

= ( k 2 V 2 + β1 S ) I 1 − α1 I 1 

d I 2 
dt 

= ( k 1 V 1 + β2 S ) I 2 − α2 I 2 

dR 

dt 
= γ1 I 1 + γ2 I 2 − μR (1) 

where λ = r 1 + r 2 + μ, α1 = μ + ν1 + γ1 and α2 = μ + ν2 + γ2 , 

With the condition S + V 1 + V 2 + I 1 + I 2 + R = N . 

3. Disease dynamics 

It follows from the system (1) that 

0 ≤ dS 

dt 
+ 

d V 1 

dt 
+ 

d V 2 

dt 
+ 

d I 1 
dt 

+ 

d I 2 
dt 

+ 

dR 

dt 
= � − μN − ν1 I 1 − ν2 I 2 ≤ � − μN 

Therefore, lim sup t →∞ 

( S + V 1 + V 2 + I 1 + I 2 + R ) ≤ �
μ . Hence 

the feasible region for system (1) is 

� = 

{
( S + V 1 + V 2 + I 1 + I 2 + R ) : S > 0 , V 1 > 0 , I 1 > 0 , I 2 > 0 , 

× R > 0 , S + V 1 + V 2 + I 1 + I 2 + R ≤ �

μ

}
. 

3.1. Equilibria 

Setting the equations in (1) equal to zero, and solving simulta- 

neously we get four equilibrium points: 

(I) Disease free equilibrium, E 0 = ( �
λ

, 
r 1 �
λμ

, 
r 2 �
λμ

, 0 , 0 ) , 

Since all the coordinates of E 0 are positive, it is biologically 

meaningful. 

(II) Strain 2 disease free equilibrium (strain 1 infection equilibrium) 

E 1 , 

S̄ = 

�

β1 I 
1 
1 

+ λ
, V 1 = 

r 1 �

μ( β1 I 1 + λ) 
, 

V 2 = 

r 2 �

( β1 I 1 + λ) ( μ + k 2 I 1 ) 
, I 2 = 0 

And I 1 is the root of, 

AI 2 1 + B I 1 + C = 0 (2) 

Where A = α1 β1 k 2 , B = α1 β1 μ − k 2 β1 � + α1 λk 2 , C = α1 λμ −
k 2 r 2 � − β1 �μ. 

Since S̄ , V 1 and V 2 are all positive, to check the biologically 

meaningfulness of E 1 we need to check the root of Eq. (2) , 

First, assume that C ≥ 0 

α1 λμ − k 2 r 2 � − β1 �μ ≥ 0 

⇒ α1 ( r 1 + r 2 + μ) μ ≥ k 2 r 2 � + β1 �μ

⇒ α1 ≥ k 2 r 2 � + β1 �μ

( r 1 + r 2 + μ) μ
(3) 

And when C ≥ 0, B must be less than zero otherwise (if B ≥ 0) 

Eq. (2) has no positive root. But when B ≤ 0, 

α1 β1 μ − k 2 β1 � + α1 λk 2 ≤ 0 

⇒ α1 ( β1 μ + λk 2 ) ≤ k 2 β1 �

⇒ 

1 

α1 

≥ β1 μ + ( r 1 + r 2 + μ) k 2 
k 2 β1 �

(4) 

From (3) and (4) we get 

1 ≥ k 2 r 2 � + β1 �μ

( r 1 + r 2 + μ) μ

β1 μ + ( r 1 + r 2 + μ) k 2 
k 2 β1 �

After some simplification we have 

0 ≥ ( k 2 r 2 � + β1 μ�) β1 μ + ( r 1 + r 2 + μ) k 2 2 r 2 � (5) 

Which is a contradiction since all coefficients in Eq. (5) are 

positive. Therefore when C ≥ 0, B must be greater than zero, it 

means there is no positive solution of Eq. (2) and so E 1 is 

meaningless. 
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