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a b s t r a c t 

Recently a new fractional differentiation was introduced to get rid of the singularity in the Riemann- 

Liouville and Caputo fractional derivative. The new fractional derivative has then generate a new class of 

ordinary differential equations. These class of fractional ordinary differential equations cannot be solved 

using conventional Adams–Bashforth numerical scheme, thus, in this paper a new three-step fractional 

Adams–Bashforth scheme with the Caputo–Fabrizio derivative is formulated for the solution linear and 

nonlinear fractional differential equations. Stability analysis result shows that the proposed scheme is 

conditionally stable. Applicability and suitability of the scheme is justified when applied to solve some 

novel chaotic systems with fractional order α ∈ (0, 1). 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The primary interest of this paper is to extend the analysis and 

application of the newly developed fractional two-step Adams–

Bashforth scheme with the Caputo–Fabrizio derivative to nonlinear 

system of the form 

D 

α
0 ,t u i (t) = f i (u i , t) , 

u i (0) = ϑ i , i = 1 , 2 , . . . , n (1.1) 

where D 

α
0 ,t 

denotes the αi order derivative of function u i ( t ), for 

0 < αi ≤ 1. This derivative is replaced with the Caputo–Fabrizio frac- 

tional derivative defined by 

CF D 

α
0 ,t (u i (t)) = 

M(α) 

1 − α

∫ 
0 t 

u 

′ 
i ( ξ ) exp 

[
−α

t − ξ

1 − α

]
dξ , 

i = 1 , 2 , . . . , n. (1.2) 

Most fractional differential equations describing real-world 

(physical) problems are highly complicated and cannot some- 
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times be solved analytically. A lot of numerical approaches in 

connection with derivatives of fractional order describing these 

real-world problems alter essentially in the many in which the 

derivative of fractional order is tailored, see for instance [3–6,13–

15,18,32,34,35] and references therein. Numerical approximation of 

a derivative of fractional order has a highly complicated formula 

compared to those of integer order due to their nonlocal nature, 

and therefore the calculation at a particular point requires knowl- 

edge of the function further out of the region close to that point. 

Accordingly, finite difference approximations of derivatives of frac- 

tional order engage a quantity of points that alters according to 

how faraway we are from the border line. 

One of the most recent fractional order derivatives was pro- 

posed by Caputo and Fabrizio [10,11] , where it was shown that 

the new-fangled derivative contains additional encouraging proper- 

ties in comparison with the older version. For example, they have 

shown that it can represent substance heterogeneities and config- 

urations with different scales, which clearly cannot be overseeing 

with the prominent local theories and also the known fractional 

derivative. Another application is in the investigation of the macro- 

scopic behaviors of some materials that are associated with nonlo- 

cal communications between atoms, which are recognized to be 

important of the properties of material [3] . 

https://doi.org/10.1016/j.chaos.2017.10.020 

0960-0779/© 2017 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.chaos.2017.10.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.10.020&domain=pdf
mailto:kmowolabi@futa.edu.ng
mailto:atanganaa@ufs.ac.za
https://doi.org/10.1016/j.chaos.2017.10.020


112 K.M. Owolabi, A. Atangana / Chaos, Solitons and Fractals 105 (2017) 111–119 

Ordinary differential equations (ODEs), partial differential equa- 

tions (PDEs) and partial integro-differential equations (PIDEs) of 

fractional order have been the major subject of activities in the 

last few decades, as a result of their frequent appearance in var- 

ious applications in biology, economics and finance, engineering, 

fluid mechanics, physics and viscoelasticity [18,34] . Consequently, 

a lot of attention has been devoted to the solutions of fractional 

ODEs, PIDEs of physical interest [9,12,25–30] . As widely observed, 

most of these nonlinear fractional differential equations do not ei- 

ther admit a closed form solution, or that the analytical solution 

is too involved to be useful, which perhaps ruled out a closed 

form solution. In such a situation, approximation and numerical 

method must be proposed. Among several other methods that have 

been used include the finite difference method [9,16,21,26] , spec- 

tral methods [9,27,28,31,33,40,41] the variation iteration method 

[22–24] , and the Adomian decomposition method [22,36,39] . 

With the wider applicability of the new class of fractional 

differential equation from Caputo–Fabrizio derivative with expo- 

nential decay law kernel, new, accurate and efficient numerical 

schemes are needed. A very powerful numerical scheme for solv- 

ing nonlinear ordinary differential equation known as Adams–

Bashforth method has been used in several instances to handle 

many chaotic models. This model is being recognized as a sta- 

ble method for nonlinear ordinary differential equations and also 

chaotic models arising in biology and other fields of science. How- 

ever, this model has not being developed for nonlinear models 

with Caputo–Fabrizio derivative. This work is therefore devoted 

to the development of the Adams–Bashforth scheme for ordinary 

differential equation with local fading memory induced by the 

Caputo–Fabrizio fractional differential operators. 

The rest of this paper is organized as follows. Some basic defi- 

nitions and properties of fractional calculus are presented in brief 

in Section 2 . The new three-step Adams–Bashfort method with the 

Caputo fractional derivative, and the stability condition are derived 

in Section 3 . Some numerical experiments are given in Section 4 to 

justify the applicability of the proposed method. We conclude the 

paper with Section 5 . 

2. Basic definitions and properties of fractional calculus 

In this section, we report a quick tour of some of the useful 

basic definitions and properties of the fractional calculus ranging 

from local to nonlocal case [4,15,37,38] . 

Definition 2.1. A real function u ( t ), t > 0 is said to be in space 

C ν , ν ∈ R if there exists a real number k ( > ν), such that u (t) = 

t k u 1 , where u 1 ( t ) ∈ C [0, ∞ ), which is alsoin space C n ν if and only 

if u ( n ) ∈ C ν , n ∈ N . 

Till date, the most popularly used fractional derivatives remain 

the Riemann–Liouville and the Caputo types defined as 

RL D 

α
0 ,t u (t) = 

1 

�(n − α) 

d n 

dt n 

∫ t 

0 

( t − ξ ) n −α−1 u ( ξ ) dξ (2.3) 

and 

C D 

α
0 ,t u (t) = 

1 

�(n − α) 

∫ t 

0 

( t − ξ ) n −α−1 d 
n 

dt n 
u ( ξ ) dξ (2.4) 

respectively, with n − 1 < α ≤ n . Most new fractional derivatives 

that are recently developed hang on the shoulder of these two 

derivatives. For instance, the Atangana–Baleanu fractional deriva- 

tive in the sense of Caputo and Riemann–Liouville derivatives. 

Definition 2.2. Let u ∈ H 

1 ( a, b ), a < b , α ∈ [0, 1] then, the definition 

of the Atangana and Baleanu fractional derivative in Caputo sense 

is given as [2,7] 

ABC D 

α
a,t (u (t)) = 

M(α) 

1 − α

∫ t 

a 

u 

′ ( ξ ) E α

[
−α

( t − ξ ) α

1 − α

]
dξ (2.5) 

where a is the starting point, usually assumed to be zero, and 

M ( α) has the same properties as in the case of the Caputo–Fabrizio 

[10,11] fractional derivative. 

Definition 2.3. Let u ∈ H 

1 ( a, b ), a < b , α ∈ [0, 1] then, the definition 

of the Atangana–Baleanu fractional derivative in Riemann–Liouville 

sense becomes [2,7] 

ABR D 

α
0 ,t (u (t)) = 

M(α) 

1 − α

d 

dt 

∫ t 

a 

u ( ξ ) E α

[
−α

( t − ξ ) α

1 − α

]
dξ (2.6) 

Obviously, both Eqs. (2.5) and (2.6) have a non-local kernel. 

Also, one obtains zero whenever the function in Eq. (2.5) is con- 

stant. In both cases, the term E α is referred to as the one- 

parameter Mittag–Leffler function, given by 

E α(u ) = 

∞ ∑ 

k =0 

u 

k 

�(αk + 1) 
, α > 0 , α ∈ R , u ∈ C . (2.7) 

Definition 2.4. Let u be a function in H 

1 ( a, b ); b > a ; α ∈ [0, 1] then, 

the Caputo–Fabrizio fractional derivative of order α is defined as 

[10] 

CF D 

α
0 ,t u (t) = 

M(α) 

(1 − α) 

∫ t 

0 

u 

′ ( ξ ) exp 

[
−α( t − ξ ) 

1 − α

]
dξ , (2.8) 

where M ( α) denotes a normalized function, such that M(0) = 

M(1) = 1 . 

But, in case the function u does not belong to H 

1 ( a, b ), the 

Caputo–Fabrizio derivative for this version is defined as 

CF D 

α
0 ,t u (t) = 

αM(α) 

(1 − α) 

∫ t 

0 

( u ( t) − u (ξ )) exp 

[
−α(t − ξ ) 

1 − α

]
dξ . 

(2.9) 

The above Caputo–Fabrizio fractional derivative was later modified 

by Losada and Nieto in [20] as 

CF D 

α
0 ,t u (t) = 

(2 − α) M(α) 

2( 1 − α) 

∫ t 

0 

u 

′ ( ξ ) exp 

[
−α( t − ξ ) 

1 − α

]
dξ . (2.10) 

3. Numerical method of approximation 

In this section, we first introduce the two-step Adams–

Bashforth scheme with the Caputo–Fabrizio fractional derivative, as 

proposed by Atangana and Owolabi [7] . 

We start by presenting the numerical approximation based on 

the definition of the Caputo–Fabrizio derivative for Caputo-type 

[1,10,11] , 

CF 
0 D 

α
t (u (t)) = 

M(α) 

1 − α

∫ t 

0 

u 

′ ( ξ ) exp 

[
−α

t − ξ

1 − α

]
dξ . (3.11) 

For some integer N > 0, the grid size in time for finite difference 

technique is given by 

k = 

1 

N 

. 

In the time interval [0, T ], the grid points are denoted as t n = 

nk, n = 0 , 1 , 2 , . . . , T N. The value of the function u at the grid point 

is u i = u (t i ) . 

A discrete approximation to the Caputo–Fabrizio derivative of 

fractional order is given in [3] by the simple quadrature formula 

as 

CF 
0 D 

α
t (u (t n )) = 

M(α) 

1 − α

∫ t n 

0 

u 

′ ( ξ ) exp 

[
−α

t n − ξ

1 − α

]
dξ . (3.12) 
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