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a b s t r a c t 

A multifractal analysis on a finite-range-scale of the plume concentration images at different experimen- 

tal conditions (the height of the source H o ), where the measure is the grey value of the image (from 0 to 

255), was applied to study its structure through time. The multifractal spectrum showed the characteristic 

inverse U-shape and a similar evolution in all H o . The variation of the Hölder exponent ( �α) presented 

different am plitudes at different moments and increased with time. The symmetry of the spectrum ( �f ) 

decreased with time achieving negative values (from left hand asymmetry evolving to right asymmetry). 

We show the different behaviour of axial velocity ( W ) with �α and �f . There is a linear relation of en- 

trainment coefficient ( αe ) and the entropy dimension ( α1 ). Therefore, the multifractal spectrum and the 

derived parameters can be used as markers of plume evolution as well as to study the effect of experi- 

mental conditions. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Turbulent plumes are fluid motions whose primary sources of 

kinetic energy and momentum flux are body forces derived from 

density differences [ 1 , 2 ]. The plume boundary is an edge across 

which the ambient fluid is entrained and the plume boundary 

moves at the velocity of the plume fluid. In geophysics, it is usu- 

ally the generation of turbulent plumes as a part of a dispersion 

process. For example, volcanic plumes or river plumes can be ob- 

served where a stream, usually a river, empties into a lake, sea or 

ocean. Therefore, the geophysical importance of turbulent plumes 

is clear. It is very interesting to use fractal methods to analyse 

satellite images to detect and quantify the time behaviour of vol- 

canic plumes to study problems related to environmental impacts 

or aviation hazards [ 3 , 4 ]. It is also possible to determine the di- 

rection of littoral transport at a time if we study the geometry 

of a river plume. Fractal methods can do this analysis [5] . Larger- 

scale features of plumes are generally well-represented by the frac- 

tal method characterizing scalar isosurfaces in terms of fractal and 

multifractal properties. Many other processes can be adequately 

described by fractals, such as river networks [6] , rainfall dynam- 

ics [7] , cloud shapes [8] and turbulent dispersion of a contaminant 

in the atmospheric boundary layer [9–12] . 
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The fractal technique has been used to analyse turbulent fields 

in several contexts and provides a natural method for describing 

the self-similar nature of processes [13] . These are useful tools to 

analyse the geometric evolution of surfaces in turbulent flows and 

the implications of this geometric behaviour on mixing [14] . 

Several studies analyse the relation between the fractal di- 

mension of various surfaces (boundary layers, axisymmetric jets, 

plane wakes and mixing layers) in high Reynolds number turbu- 

lent flows. In 1989, Sreenivasan et al, summarized the previous re- 

sults on the fractal dimensions of scalar and vorticity interfaces in 

several classical turbulent flows (a fractal dimension of 2.35 ± 0.05 

[15–16] ). Fractal dimensions between 1.3 and 1.35 are obtained 

from LES (large-eddy simulation) plumes for neutral and convec- 

tive conditions [17] . Prasad and Sreenivasan used the box-counting 

method to analyse images of jet sections and determined that the 

fractal dimension of jet boundaries was 1.36, which is close to es- 

timates from atmospheric data [14] . Hentschel and Procaccia pre- 

dicted a slightly higher cloud perimeter fractal dimension in the 

range between 1.37 and 1.41 [13] . Sykes and Gabruk determined a 

fractal dimension (roughly 1.30–1.35) for the scalar concentration 

field of a turbulent plume dispersion [17] . Lane-Serff investigated 

the effects of buoyancy on the fractal structure of round, turbu- 

lent jets and plumes. He also measured the fractal dimension of 

concentration contours in jets and plumes, which had an apparent 

minimum of 1.23 [18] . 
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Many processes are highly intermittent with spiky measures 

and strong nonuniformities (for example, the distribution of a tur- 

bulent kinetic energy dissipation rate). These intermittent pro- 

cesses cannot be well-described by the typical moment methods 

and, therefore, a multifractal method is required [19] . Multifractal 

analysis aims to deduce the multifractal spectrum which is mea- 

sured for several positive magnitudes that characterize small-scale 

motions [20–22] . The multifractal description is more general than 

other theories. Some of these are special cases; for example, the 

point f( α = 1) = 1 in the energy dissipation rate spectrum is Kol- 

mogorov’s theory (K41). Actually, we consider that turbulence is a 

multiplicative process and, therefore, the multifractal method can 

be used to study turbulence [12] . Puthenveettil et al. conducted 

the multifractal analysis using binary images and the standard box 

counting methodology to estimate the multifractal exponents [23] . 

Finally, Lane-Serff concluded that the use of a single value for the 

fractal dimension in jets and plumes is questionable [18] . 

The objective of our study is to apply a multifractal analysis to 

compare the characteristics of the multifractal spectrum, obtained 

from grey-scale images of the plume at different times and under 

different initial conditions, with the classical magnitudes that char- 

acterize the plume’s dynamic. First, we describe the experimen- 

tal procedure to generate a turbulent plume, its main characteris- 

tics and the multifractal method in Section 2 . In §3, we present 

the multifractal results and their comparison with the axial veloc- 

ity and the entrainment coefficient of the plume. Finally, in §4 we 

present the conclusions and we discuss the relevance of this anal- 

ysis for the presented case study. 

2. Material and methods 

2.1. Experimental setup and procedures 

The aim of the experimental procedure is to generate a turbu- 

lent axysimmetric plume, controlling its position and its physical 

characteristics as buoyancy and momentum fluxes. We release a 

volume fluid vertically down (with a flow rate up to 8.40 cm 

3 s −1 ) 

from a small orifice, with a diameter d = 0. 6 cm, into a stationary 

body of water with a height of 16.5 cm contained in a glass tank 

of dimensions 32 cm high and a 25 cm × 25 cm cross-section . The 

small orifice is located at a height H o which takes values of 2 cm, 

3 cm, 3.5 cm and 6.5 cm and, therefore, increases the overall initial 

potential energy of the fluid system and the momentum flux. The 

Atwood number, A , measures the density difference of the fluid 

system. The Reynolds number at the source, based on the source 

diameter and the mean velocity there, is approximately 20 0 0. The 

flow was not observed in the far field (ranging between 250- d and 

550- d ) due to the dimensions of the tank. The releasing fluid was 

a potassium permanganate solution (500 cm 

3 ) which is consid- 

ered as incompressible and miscible and, as such, presents a high 

Schmidt number (of the order of 10 3 ) and has an intense purple 

colour (from pink to mauve). Thus, it was not necessary to add a 

dye as passive tracer and the flow was directly visualized. A de- 

tailed description of the experimental setup can be found in López 

[24] and in López, Cano and Redondo [25] . 

The flow was back illuminated from conventional fluorescent 

lights approximately 0.5 m from the tank giving a projection. This 

procedure gives an integral image of the plume volume and the 

registered images average the concentration over the plume vol- 

ume. The flow was recorded by a high-quality digital video sys- 

tem at high velocity mode (100 fps). The video recordings of the 

experiments were sequenced into frames using a frame-sequencer 

software (VirtualDubMod). The frame array had a resolution of 

640 × 480 pixels capturing the area of 25 × 18 cm 

2 . Each frame has 

intensities recorded as integers in ranging from 0–255. For each 

experimental video, 288 frames were obtained and between 40 

and 60 frames of the time-dependent, three-dimensional plume 

dispersion were used for the multifractal analysis (those without 

interaction of the plume with the tank contours). 

Fig. 1 shows a sequence of digitized video images from a sin- 

gle experiment and show the time evolution of a turbulent plume. 

Upon entering the ambient fluid, the source fluid becomes unstable 

and forms a turbulent plume at the centre of the tank ( Fig. 1 (a)–

(d)). As the plume is gravitationally unstable, it engulfs lighter fluid 

as it evolves and there is entrainment of the ambient fluid that 

is directed through the border of the turbulent plume [26] . The 

downward speed of the plume produces an upward recirculating 

movement in the ambient fluid which favours the mixing between 

them. 

The behaviour of turbulent plumes is described by three ordi- 

nary differential equations for the fluxes of volume, momentum 

and buoyancy under the Boussinesq assumption [1] . The governing 

parameters are the radius r , the vertical velocity W , the entrain- 

ment velocity U e and the reduced gravity g’. 

The difference between the plume -fluid radial velocity and the 

total fluid velocity naturally quantifies the purely horizontal en- 

trainment flux of ambient fluid into the plume. This process is 

characterized by an inflow speed perpendicular to the plume axis 

which is characterized by the entrainment assumption [1,26–28] . 

This hypothesis states that the rate of transfer of ambient fluid 

into the plume, U E , is proportional to the mean centre-line ver- 

tical speed of the plume, W, or axial velocity. The ratio of inflow 

or entrainment velocity to the plume vertical speed is called the 

entrainment constant: αE = U E /W . Fig. 2 shows these main magni- 

tudes that characterize the dynamics of a plume overwritten on 

the third frame of Fig. 1 ( t = 0.44 s). 

Away from the exit of the nozzle, similarity arguments show 

that the plume spreads linearly and the axial velocity decreases in- 

versely to the distance. The mean flow model described by Morton 

et al. gives the plume radius r proportional to the distance from 

the source z ( r = 6 αP z/ 5 ) where αp is the entrainment coefficient 

for a plume and the mean vertical speed W is proportional to r −3 

( W ∝ r −3 ) for plumes [1,18] . 

Images of plumes, such as other digital imagery, typically con- 

tain a large proportion of mixed-pixels (pixels whose digital num- 

ber is the weighted average of more than one constituent, such as 

a water/sodium permanganate). To facilitate identification of con- 

stituent peaks in the grey-scale histogram, a 2-D filter, executed 

in NIH ImageJ [29] , was run on each frame to mask pixels which 

differed by more than 0.1% from the surrounding neighbourhood 

of 25 pixels (5 × 5 unit area). Full details of this technique can be 

found in Elliot and Heck [30] . The resulting images are shown in 

Fig. 1 (e)–(h). 

2.2. Multifractal analysis 

Multifractal techniques divide the full image of analysis into 

boxes to construct samples at different scales. The size of the box 

for implementing the multifractal method will be the one between 

the highest resolutions (1 pixel) to the highest size of the full im- 

age. A partitioning process starting from the smallest resolution to 

successively form larger boxes combining pixels is called upscal- 

ing process. There are two main methods of upscaling process: the 

box counting method and gliding box method. In this study, we 

have applied the latter. 

In box counting method the number of boxes will be smaller 

when the box size ε goes closer to 1. This implies that the num- 

ber of samples will not be enough for carrying out good statisti- 

cal analysis, increasing the error associated to the measure. On the 

contrary, gliding box method construct samples gliding a box over 

the grid map in all possible ways provided that the box is com- 

pletely bounded by the grid map. Through this procedure more 
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