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1. Introduction 

Let f be a continuous map acting on a compact metric space 

X and ϕ a continuous function on X . The notion of topological 

pressure of ϕ was brought to the theory of dynamical systems 

by Ruelle [14] and Walters [17] , and it was further developed 

by Pesin and Pitskel [13] . The topological pressure is a key no- 

tion in dynamical systems and dimension theory. In [12] , Pesin 

used the dimension approach to the notion of topological pressure, 

which was based on the Carathéodory structure [6] (we call it the 

Carathéodory–Pesin structure, or briefly, C–P structure). It is a very 

powerful tool to study dimension theory and dynamical systems. 

For a proper map, Patrão [11] , Ma and Cai [10] introduced some 

notions of topological entropy. Moreover, Li and Zhang [8,9] intro- 

duced nonadditive and almost additive topological pressures. 

In this paper, by using the C–P structure, we introduce three 

notions of topological pressure for a proper map of a metric space. 

They are extensions of the classical topological pressures intro- 

duced by Walters [17] , Pesin and Pitskel [13] respectively. Some 

properties of these notions are provided. For the proper map of a 

locally compact separable metric space, we prove some variational 

principles and give some applications on the multifractal analysis 
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of local entropies. These extend some results of Pesin [12] , Takens 

and Verbitski [15] , etc. 

This paper is organized as follows. In Section 2 , we introduce 

the notions of the topological pressure, the lower and upper capac- 

ity topological pressure and give some basic properties of them. In 

Section 3 , we give some further properties. In Section 4 , we give 

some variational principles. In Section 5 , we give some applica- 

tions. 
2. Topological pressure, lower and upper capacity topological 

pressures and their basic properties 

In this section, by using the C–P structure [12] , the topologi- 

cal pressure and lower and upper capacity topological pressure are 

introduced for the proper map of a metric space. 

Let X be a topological space and f : X → X the proper maps, i.e., 

f is a continuous map such that the pre-image by f of any compact 

set is compact. An open set is called an admissible open set if the 

closure or the complement of it is compact. An admissible cover of 

X is an open and finite cover U of X such that, for each U ∈ U , U is 

an admissible open set. 

Let ( X, d ) be a metric space and denote B ( x, δ) the open ball 

centered at x with radius δ > 0. The metric d is called admissible 

[11] if the following conditions are satisfied: 

1. If U δ = { B (x 1 , δ) , . . . , B (x k , δ) } is a cover of X , for every δ ∈ ( a, 

b ), where 0 < a < b , then there exists δε ∈ ( a, b ) such that U δε 
is 

admissible. 

2. Every admissible cover of X has a Lebesgue number. 
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In [10] , the authors proved that for a metric space ( X, d ), every 

admissible cover of X has a Lebesgue number, so the condition (2) 

in the definition of admissible metric can be deleted. From [11] , 

we see that if d is an admissible metric, then for any ε > 0 there 

exists an admissible cover such that the diameter of this cover is 

less than ε. It is easy to see that, if ( X, d ) is compact, then d is 

automatically admissible. 

Let ( X, d ) be a metric space and f : X → X a proper map. 

Given an admissible cover U of X , denote by S m 

(U ) the set of 

all strings U = (U i 0 
, U i 1 

, . . . , U i m −1 
) of length m = m (U ) , where U i j 

∈ 

U , j = 0 , 1 , . . . , m − 1 . We put S = S(U ) = 

⋃ 

m ≥0 

S m 

(U ) . 

To a given string U = (U i 0 
, U i 1 

, . . . , U i m −1 
) ∈ S(U ) we associate 

the set 

X (U ) = { x ∈ X : f j (x ) ∈ U i j , j = 0 , 1 , . . . , m (U) − 1 } . 

It is easy to see that X(U ) = 

m (U) −1 ⋂ 

j=0 

f − j U i j 
, and X ( U ) is an ad- 

missible open set. Let ϕ ∈ C(X, R ) be bounded, where C(X, R ) de- 

notes the space of real-valued continuous functions of X . Denote 

(S n ϕ)(x ) = 

∑ n −1 
k =0 

ϕ( f k (x )) . Define the collection of subsets 

F = F (U ) = { X (U ) : U ∈ S(U ) } 
and three functions ξ , η, ψ : S(U ) → R 

+ as follows 

ξ (U ) = exp 

(
sup 

x ∈ X(U ) 

(S m (U ) ϕ)(x ) 

)
, 

η(U ) = exp (−m (U )) , 

ψ(U ) = m (U ) −1 . 

It is easy to verify that the sets S, F and the functions ξ , η, and 

ψ determine a C–P structure τ = τ (U ) = (S, F , ξ , η, ψ) on X (see 

[12] ). We say that a collection of strings G covers a set Z ⊂ X if ⋃ 

U ∈G 
X(U ) ⊃ Z. For any set Z ⊂ X and α ∈ R , define 

M(Z, α, ϕ, U , N) 

:= inf 
G 

{ ∑ 

U ∈G 
ξ (U ) η(U ) α

} 

= inf 
G 

{ ∑ 

U ∈G 
exp 

(
−αm (U ) + sup 

x ∈ X(U ) 

(S m (U ) ϕ)(x ) 

)} 

, 

and the infimum is taken over all finite or countable collections of 

strings G ⊂ S(U ) such that m ( U ) ≥ N for all U ∈ G and G covers Z . 

Let 

m (Z, α, ϕ, U ) = lim 

N→ + ∞ 

M(Z, α, U , N) . 

For every real numbers α introduce 

r (Z, α, ϕ, U ) = lim 

N→∞ 

R (Z, α, ϕ, U , N) , 

r (Z, α, ϕ, U ) = lim 

N→∞ 

R (Z, α, ϕ, U , N) , 

where 

R (Z, α, ϕ, U , N) = inf 
G 

{ ∑ 

U ∈G 
exp 

(
−αN + sup 

x ∈ X(U ) 

(S N ϕ)(x ) 

)} 

, 

and the infimum is taken over all collections of strings G ⊂ S(U ) 

such that m (U ) = N for all U ∈ G and G covers Z . By the definition 

of C–P structure, define 

P Z (ϕ, U ) := inf { α : m (Z, α, ϕ, U ) = 0 } 
= sup { α : m (Z, α, ϕ, U ) = ∞} , 

CP Z (ϕ, U ) := inf { α : r (Z, α, ϕ, U ) = 0 } 

= sup { α : r (Z, α, ϕ, U ) = ∞} , 
CP Z (ϕ, U ) := inf { α : r (Z, α, ϕ, U ) = 0 } 

= sup { α : r (Z, α, ϕ, U ) = ∞} . 
Lemma 2.1. [( [11] )] Let ( X, d ) be a metric space, then every admissi- 

ble cover of X has a Lebesgue number. 

Theorem 2.2. Let ( X, d ) be a metric space and d an admissible met- 

ric, f : X → X a proper map, ϕ ∈ C(X, R ) bounded. Then for any Z ⊂ X, 

the following limits exist: 

P Z (ϕ) := lim 

|U|→ 0 
P Z (ϕ, U ) , 

CP Z (ϕ) := lim |U|→ 0 
CP Z (ϕ, U ) , 

CP Z (ϕ) := lim |U|→ 0 
CP Z (ϕ, U ) , 

where U is admissible cover and |U| denotes the diameter of U , i.e., 

|U| = max { diam (U ) : U ∈ U} . 
Proof. We use the similar method as that of [12] . By Lemma 2.1 , 

we let V be an admissible cover of X with diameter smaller 

than the Lebesgue number of admissible cover U . One can 

see that each element V ∈ V is contained in some element 

U(V ) ∈ U . To any string V = (V i 0 , . . . , V i m ) ∈ S(V) we associate the 

string U (V ) = (U (V i 0 ) , . . . , U (V i m )) ∈ S(U ) . If G ⊂ S(V) covers a set 

Z ⊂ X then U (G) = { U (V ) : V ∈ G} ⊂ S(U ) also covers Z . Let γ = 

γ (U ) = sup {| ϕ(x ) − ϕ(y ) | : x, y ∈ U, U ∈ U} . Then for every α ∈ R 

and N > 0 

M(Z, α, ϕ, U , N) ≤ M(Z, α − γ , ϕ, V, N) . 

We deduce that 

P Z (ϕ, U ) − γ ≤ P Z (ϕ, V) . 

Since X has admissible cover of arbitrarily small diameter, then 

P Z (ϕ, U ) − γ ≤ lim 

|V|→ 0 

P Z (ϕ, V) . 

If |U| → 0 , then γ (U ) → 0 and hence 

lim |U|→ 0 
P Z (ϕ, U ) ≤ lim 

|V|→ 0 

P Z (ϕ, V) . 

This implies the existence of the first limit. The others can be 

proved in a similar fashion. �

We call the quantities P Z ( ϕ ), CP Z (ϕ , f ) , CP Z ( ϕ ) respectively, 

the topological pressure and lower and upper capacity topological 

pressure of the function ϕ on the set Z (with respect to f ). We write 

P Z, f ( ϕ ), CP Z, f (ϕ , f ) , CP Z, f ( ϕ ) respectively to emphasize f if we need 

to. 

By the basic properties of the C–P structure [12] , we get the fol- 

lowing basic properties. From Theorem 2.3 to Theorem 2.7 , we al- 

ways assume that ( X, d ) is a metric space with d being an admissi- 

ble metric, f : X → X is a proper map and ϕ, ψ ∈ C(X, R ) is bounded. 

Theorem 2.3. 

1. P ∅ ( ϕ) ≤ 0 . 

2. P Z 1 (ϕ) ≤ P Z 2 (ϕ) if Z 1 ⊂ Z 2 ⊂ X. 

3. P Z (ϕ) = sup i ≥1 P Z i (ϕ) , where Z = 

⋃ 

i ≥1 Z i , Z i ⊂ X, i = 1 , 2 , . . . . 

4. If f is a homeomorphism then P Z (ϕ) = P f (Z) (ϕ) , where Z is any 

subset of X. 

Theorem 2.4. 

1. CP ∅ (ϕ) ≤ 0 , CP ∅ (ϕ) ≤ 0 ; 

2. CP Z 1 (ϕ) ≤ CP Z 2 (ϕ ) , CP Z 1 (ϕ ) ≤ CP Z 2 (ϕ) if Z 1 ⊂ Z 2 ⊂ X. 

3. CP Z (ϕ) ≥ sup i ≥1 CP Z i (ϕ ) and CP Z (ϕ ) ≥ sup i ≥1 CP Z i (ϕ) , where 

Z = 

⋃ 

i ≥1 Z i , Z i ⊂ X, i = 1 , 2 , . . . . 
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