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a b s t r a c t 

The dynamics of a Brownian particle diffusing in the pure fractional damping environment is studied 

in the field of a metastable potential. Several anomalous behaviors are revealed such as that a type of 

reverse diffusion is encountered. And the diffusion dynamics is closely related to the fractional exponent 

α. Particles are found to move reversely in the opposite direction of diffusion when α is relatively large 

despite of the zero-approximating effective friction of the system 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The phenomenon of anomalous diffusion is ubiquitous in vari- 

ous classical and quantum dissipative systems [1–3] . Previous stud- 

ies have found that it may primarily be resulted from the nontriv- 

ial type of coupling between the system and its reservoir [4,5] or 

some kind of non-Markovian effect of the friction. Therefore, the 

characterization of the friction kernel is always a crucial point 

to understand anomalous diffusion by using of the generalized 

Langevin equation. 

In an early study of R. Muralidhar and his collaborators, a type 

of power-law friction kernel has been used to approximately de- 

scribe the anomalous diffusion on two-dimensional critical perco- 

lation clusters [6] , which gives us some insight on how to char- 

acterize the friction kernel as an effective constitutive property of 

the fractal medium. Recently, we renamed this kind of friction as 

fractional damping and successfully elucidated the quantum ther- 

modynamic properties of the system under its affection [7] . This 

encouraged us to concern more about the anomalous dynamics re- 

sulted from fractional damping. 

Actually, fractional damping has been observed in a multi- 

tude of systems such as amorphous semiconductors [8] , subsur- 

face tracer dispersion [9,10] and financial dynamics [11] . The sub- 

diffusive behaviors relate to it is also quite abundant in small sys- 

tems. Typical instances include the motion of small probe beads 
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in actin networks [12] , the propagation of virus shells in cells 

[13] and the motion of telomeres in mammalian cells [14] , etc. 

However, little has been known about the dynamical details of 

a Brownian particle diffusing in the pure fractional damping en- 

vironment. This may be caused by the difficult fractional calcu- 

lus immersed in the process of theoretical analysis. Although it 

has past more than 320 years since the first proposition of frac- 

tional calculus in 1695 by L. Hospital, the mathematical theory of 

it remains imperfect. In particular, the development of fractional 

derivative makes slow progress, resulting great difficulties in the 

solving of fractional differential equations. 

Therefore in this paper, we report one of our recent study on 

this point. In Section 2 , kinematic relations of the diffusion par- 

ticles are obtained by Laplacian solving the fractional generalized 

Langevin equation. The probability of successfully escaping from 

the potential well is computed in Section 3 for a characteristic vi- 

sualization. Section 4 serves as a short summary of present results 

where some discussions are also made for a further consideration. 

2. Fractional Langevin equation and its solution 

Mathematically, the motion of a Brownian particle with mass m 

diffusing in the pure fractional damping environment can be de- 

scribed by the following fractional generalized Langevin equation 

(GLE) [15–17] 

m ̈x + 

∫ t 

0 

η(t − t ′ ) ̇ x (t ′ ) dt ′ + ∂ x U(x ) = ξ (t) , (1) 
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where η(t) = ηαt −α/ �(1 − α) is the fractional friction kernel iden- 

tified by a fractional exponent α ranging from 0 to 1. ηα is 

a constant introduced to indicate the friction strength resulted 

from the viscosity and �(z) = 

∫ ∞ 

0 t z−1 e −t dt is the Gamma func- 

tion. ξ ( t ) is the fractional Gaussian noise with zero mean and its 

second momentum satisfying the fluctuation-dissipation theorem 

〈 ξ (t) ξ (t ′ ) 〉 = k B T ηα| t − t ′ | −α [18] . 

The solution of GLE, namely also the equation of motion for the 

diffusing particle, can be easily obtained by a series of Laplacian 

transformation. For an example, in the particular case of an inverse 

harmonic potential U(x ) = − 1 
2 mω 

2 x 2 , we find after some algebra 

x (t) = 〈 x (t) 〉 + 

∫ t 

0 

H(t − τ ) ξ (τ ) dτ, (2) 

in which the mean position of the particle along the transport di- 

rection is given by 

〈 x (t) 〉 = 

[
1 + ω 

2 

∫ t 

0 

H(τ ) dτ

]
x 0 + H(t) v 0 , (3) 

and the variance of x ( t ) reads 

σ 2 
x (t) = 

∫ t 

0 

dt 1 H(t − t 1 ) 

∫ t 1 

0 

dt 2 〈 ξ (t 1 ) ξ (t 2 ) 〉 H(t − t 2 ) , (4) 

where H(t) = L 

−1 [(s 2 + sη(s ) − ω 

2 ) −1 ] is namely the response 

function and η(s ) = ηαs α−1 is the Laplacian transformation of the 

friction kernel η( t ). 

3. Diffusion dynamics of fractional damping system 

For the study of diffusion dynamics, one of the basic task is 

to compute the successful rate of the particle escaping from a 

metastable potential well. Mathematically, it always emerges to be 

a complementary error function due to the Gaussian property of 

noise ξ ( t ) and linearity of the GLE. i.e. 

P (t) = 

∫ ∞ 

0 

W (x, t) dx = 

1 

2 

erfc 

( 

− 〈 x (t) 〉 √ 

2 A 11 (t) 

) 

, (5) 

yielding from a short integration on the reduced distribution func- 

tion W ( x, t ) where 

W (x, t) = 

1 √ 

2 πA 11 (t) 
exp 

[
− (x − 〈 x (t) 〉 ) 2 

2 A 11 ( t) 

]
, (6) 

is resulted from the joint probability density function (PDF) of the 

system [19] 

W (x, v , t ) = 

1 

2 π | A (t ) | 1 / 2 e 
− 1 

2 [ y 
† (t) A −1 (t) y (t) ] , (7) 

with y ( t ) the vector [ x − 〈 x (t) 〉 , v − 〈 v (t ) 〉 ] and A (t ) the matrix of 

second moments 

A 11 (t) = σ 2 
x (t) = 〈 [ x − 〈 x (t) 〉 ] 2 〉 , (8a) 

A 12 (t) = A 21 (t) = 〈 [ x − 〈 x (t) 〉 ][ v − 〈 v (t) 〉 ] 〉 , (8b) 

A 22 (t) = σ 2 
v (t) = 〈 [ v − 〈 v (t) 〉 ] 2 〉 . (8c) 

In the calculations here and following, we rescale all the quan- 

tities so that dimensionless unit such as k B T = 1 . 0 is used. The 

metastable potential U ( x ) is approximated to be an inverse har- 

monic potential in the neighbourhood of its saddle point. Firstly 

in Figs. 1 and 2 , we plot the time dependent varying of 〈 x ( t ) 〉 and 

A 11 ( t ) (namely also σ 2 
x (t) ) at various α. From which we can see 

that 〈 x ( t ) 〉 increases quickly when α is relatively small. But as the 

increasing of α, 〈 x ( t ) 〉 decays suddenly into a negative diverging 

Fig. 1. Time dependent varying of 〈 x ( t ) 〉 at various α. Parameters in use are ηα = 

2 . 0 , ω = k B T = 1 . 0 , x 0 = −1 . 0 and v 0 = 2 . 0 . 

Fig. 2. Time dependent varying of A 11 ( t ) at various α. 

Fig. 3. Time dependent varying of P ( t ) at various α. 

function of α. This is a very nontrivial result, because from the 

view point of distribution evolution, 〈 x ( t ) 〉 indicates the center of 

the PDF wave packets and A 11 ( t ) the width. Therefore it reveals 

that the center of the PDF may move in the opposite direction of 

diffusion. 

However, the value of A 11 ( t ) is always positively increasing. This 

means, as the forwarding of the center, the width of the PDF wave 

packet is continuously expanding. Therefore, despite of the unusual 

movement of the center one may always expect a steady barrier 

escaping probability. As is shown in Fig. 3 , the probability for a 

particle to pass over the saddle point tends to be a steady one 

in the long time limit no matter what is the value of α. The oc- 

currence of such a nontrivial result may probably be caused by 

the property of long-range correlations immersed in the fractional 

damping environment. And this reveals from another point of view 

that the fractional damping environment is in analogy with the 
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