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a b s t r a c t 

An adaptive dynamic surface control method using nonlinear feedback is proposed for controlling the 

uncertain Genesio-Tesi chaotic system. The feature of the nonlinear feedback technique lies in that the 

feedback gains self-adjust under different amplitudes of system states. Based on the dynamic surface con- 

trol technique, the complexity explosion problem existing in the backstepping-based chaotic controllers 

is circumvented. Moreover, the closed-loop stability is guaranteed with rigorous mathematical proof us- 

ing Lyapunov stability theorem. Comparative results are given to verify the effectiveness and advantage 

of the proposed method with comparison to the existing linear feedback control. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Controlling chaos has been a widely studied problem during the 

last decades [1–4] . During the developments and advances of con- 

trolling chaos, several famous chaotic systems have been found and 

reported, to name a few, the Lorenz system [5] , Chua system [6] , 

Chen system [7] , Lü system [8] , Qi system [9] , Genesio system [10] , 

Genesio-Tesi system [11] . As to the methods of controlling chaos, 

backstepping control using linear feedback has been proved to be 

an effective methodology [12–19] , the closed-loop dynamic can be 

proved to be stable using the full-fledged Lyapunov stability theo- 

rem. 

An inherent deficiency of the backstepping design is known as 

the complexity explosion (CE) problem. Such a problem is caused 

by the repeated differentiations of the virtual controllers during 

the recursive design processes [20] . In order to circumvent such 

a problem, Swaroop et al. proposed the pioneering dynamic sur- 

face control (DSC) method [21] , where a first-order filter was in- 

troduced going after the so-called designed virtual controllers, the 

output signals were used in the controller design instead of the 

differentiations of virtual controllers. This method circumvents the 

repeated differentiations of the virtual controllers, thus, the com- 

plexity problem was solved, which has been proved to be a signif- 

icant success by some subsequent developments and applications 

[22–26] . The complexity explosion problem also exists in the linear 

feedback backstepping methods of controlling chaos [12,15,27,28] . 
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These reported methods rely on the high-gain linear feedback to 

guarantee better controlling performance. However, from the view- 

point of practical applications, high-gain linear feedback control 

may bring in unexpected high-frequent chattering (HFC) caused by 

the un-modelled dynamics, it is shown that the stability regions 

of high-gain closed-loop nonlinear systems may vanish since ne- 

glected nonlinearities brings in an unstable limit cycle around an 

asymptotically stable equilibrium [29] . 

Among the above-mentioned chaotic systems, the Genesio–Tesi 

chaotic system [11] generates chaos with less restrictive condi- 

tions. Some previous works, for example, [10,17] and the references 

therein, require the exactly knowing of the system parameters. 

Some recent advances [13,30] may encounter the above-mentioned 

CE and HFC problems in practical implementations caused by the 

direct utilizations of backstepping and linear gain feedback, re- 

spectively. Motivated by above observations, this paper studies the 

problem of controlling Genesio–Tesi chaotic system with uncer- 

tain system parameters using a novel nonlinear feedback-based 

adaptive dynamic surface control, the uncertain system parameters 

mean that the parameters a, b , and c of condition ab < c , which 

is the key to generates chaotic behaviour of Genesio–Tesi, are not 

required to be known in the controllers. The major features and 

contributions of this paper can be summarized as follows: 

1. By adding first-order filters after the virtual controllers invok- 

ing the DSC technique, the proposed method circumvents the 

complexity explosion problem in the direct backstepping-based 

methods in [12–19] . 

2. With comparison to the linear feedback-based controllers in 

[12,15,27,28] , this paper proposes a nonlinear feedback-based 
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control using novel continuous differentiable nonlinear feed- 

back function. The major feature of the nonlinear feedback con- 

troller lies in that the feedback gains self-adjust with different 

system states. Speaking in details, the feedback gains decrease 

with large measured states to avoid the aggressive control ac- 

tions and potential actuator saturation problems, and increase 

with small states to attenuation the disturbances and uncer- 

tainties. 

3. Different from the widely-used quadratic Lyapunov function in 

[31,32] , this paper proposes a non-quadratic Lyapunov function 

to analyze the closed-loop stability caused by the compound 

function properties under the nonlinear feedback, and detailed 

parameter-selection principles are given with rigorous mathe- 

matical proof. 

The remaining of the paper is organized as follows. 

Section 2 presents some descriptions of the Genesio–Tesi chaotic 

system and the formulated problem. In Section 3 , adaptive dy- 

namic surface controllers using linear feedback and nonlinear 

feedback are all given, which facilitates the understanding of 

the difference between these two methods and the justified 

comparative results. Section 4 gives the numerical and compar- 

ative results to validate the effectiveness and advantages of the 

proposed method for controlling chaotic Genesio–Tesi system. 

Section 5 concludes this paper. 

2. System description and problem formulation 

The dynamics of Genesio–Tesi chaotic system [11] is described 

as follows: { 

˙ x 1 = x 2 
˙ x 2 = x 3 
˙ x 3 = −cx 1 − bx 2 − ax 3 + mx 2 1 + f (X, t) + u (t) 

(1) 

where x 1 , x 2 , and x 3 are the system states, a, b, c , and m are un- 

known positive real constants satisfying ab < c , X = [ x 1 , x 2 , x 3 ] 
T ∈ 

R 3 is the full-state vector, f ( X, t ) ∈ R is the unknown function de- 

pending on full-states and time, u ( t ) ∈ R is the control signal to be 

designed. With control input u (t) = 0 and f (X, t) = 0 , the chaotic 

behavior of Genesio–Tesi system is shown in Fig. 1 . 

The target is to design the control signal u ( t ) without requiring 

the priori knowledge of system parameters such that: 

1. The system states track the 3-dimensional target trajectory 

given as X r = [ x r1 , x r2 , x r3 ] 
T = [ x r , ˙ x r , ̈x r ] 

T with arbitrary small 

error, which is continuous function vector defined on [ t 0 , ∞ ]. 

Speaking mathematically, the target is let X → X r with t → ∞ , 

such that 

lim 

t→∞ 

‖ E(t) ‖ = lim 

t→∞ 

‖ X (t) − X r (t) ‖ → �0 (2) 

where �0 is small region around zero, and ‖ · ‖ denotes the Eu- 

clidean norm of its arguments; 

2. The closed-loop system is guaranteed stable in sense that all 

the closed-loop signals are kept uniformly ultimately bounded. 

Without loss of generality, the following assumptions and 

lemma are needed to design a feasible controller. 

Assumption 1. The f ( X, t ) is bounded with its arguments, that is, 

there exists some unknown positive constant ϱ, which satisfies | f ( X, 

t )| ≤ ϱ, ∀ ( X, t ). It is necessary to declare that such positive constant 

ϱ is not required in the designed controller, which is used only for 

theoretical analysis. 

Assumption 2. The target trajectory x r and its derivatives ˙ x r and ẍ r 
are bounded signals. 

Lemma 1 (Young’s Inequality) . Assume A and B are non-negative 

real number. If P > 1 and 1 
P + 

1 
Q = 1 , one knows AB ≤ EA 

P + C E B 

Q 

with arbitrarily small B and arbitrarily large C E . 

3. Adaptive dynamic surface control (A-DSC) design 

In this section, both the A-DSC designs using linear feedback 

and nonlinear feedback are given, the former one is partially in- 

spired by existing methods in [12,15,27,28,31] , while the latter one 

improves the linear feedback A-DSC by introducing a new contin- 

uous differentiable nonlinear function, which enables the feedback 

gains self-adjust under difference amplitudes of virtual and actual 

tracking errors. In the meantime, the differences between the lin- 

ear and nonlinear feedback based methods are distinct in such 

manner, the comparative results are thus guaranteed to be quite 

unprejudiced consequently. 

3.1. A-DSC design using linear feedback 

In order to proceed the control design, the following error vari- 

ables are introduced [33] : 

e 1 = x 1 − x r1 (3a) 

e 2 = x 2 − α1 − x r2 (3b) 

e 3 = x 3 − α2 − x r3 (3c) 

where α1 and α2 are virtual controllers of proper arguments to be 

later designed before the figure-out of actual controller u ( t ). Simi- 

lar to the existing literatures, the A-DSC will be worked out using 

the following three steps. 

Step 1 : Differentiating both sides of e 1 = x 1 − x r1 gives 

˙ e 1 = 

˙ x 1 − ˙ x r1 = x 2 − x r2 = e 2 + α1 (4) 

design the virtual controller α1 as follows: 

α1 = −k 1 e 1 (5) 

where k 1 is the positive design parameter. To avoid the differenti- 

ation of α1 in the following design steps, let α1 will pass through 

a first-order filter to generate a new variable ϕ1 : 

τ1 ˙ ϕ 1 + ϕ 1 = α1 , ϕ 1 (0) = α1 (0) (6) 

where τ 1 is the time coefficient of filter, and ϕ1 (0) and α1 (0) are 

the initial values of ϕ1 and α1 , respectively. 

Remark 1. The virtual controller α1 is designed as the direct con- 

stant negative feedback of e 1 . Incorporating (5) with (4) , the virtual 

closed-loop system can be obtained as ˙ e 1 = −k 1 e 1 + e 2 . In this sit- 

uation, one chooses the Lyapunov function V 1 = 

1 
2 e 

2 
1 

and its time 

derivative is ˙ V 1 = e 1 ̇ e 1 = −k 1 e 
2 
1 + e 1 e 2 . Because the e 2 is unknown 

information in this step, we need now proceed to the following 

step to figure out such an issue. And the introduction of new vari- 

able ϕ1 in (6) is to circumvent the repeated differentiations of 

α1 in the following steps, this is inspired by the pioneering DSC 

method proposed in [21] . Similar arguments also apply to the fol- 

lowing design steps. 

Step 2 : Differentiating e 2 = x 2 − α1 − x r2 gives 

˙ e 2 = x 3 − ˙ α1 − ˙ x r2 = e 3 + α2 − ˙ α1 (7) 

design the virtual controller α2 as follows: 

α2 = −k 2 e 2 + ˙ ϕ 1 (8) 

where k 2 is the positive design parameter. Similar to Step 1, vari- 

able ϕ2 are introduced by the following first-order filter: 

τ2 ˙ ϕ 2 + ϕ 2 = α2 , ϕ 2 (0) = α2 (0) (9) 

where τ 2 is the time coefficient of filter, and ϕ2 (0) and α2 (0) are 

the initial values of ϕ2 and α2 , respectively. 
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