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a b s t r a c t 

The vaccination, latent and relapse period are three important factors affecting the whole disease devel- 

opment. In this paper, we propose an SVEIR epidemic model with continuous age-dependent vaccination, 

latency and relapse, at the same time, the nonlinear incidence rate is also considered. Uniform persis- 

tence of the model is proved by reformulating it as the so called Volterra integral equations. The basic 

reproduction number R 0 , which completely determines the global dynamics of the model, is derived. 

By using Lyapunov functionals, the global stability of the equilibria is obtained. Namely, the disease-free 

equilibrium is globally asymptotically stable if R 0 < 1 , while if R 0 > 1 the endemic equilibrium is glob- 

ally asymptotically stable. Finally, two numerical examples support our main analytical results. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Vaccination is considered as one of the most practical and ef- 

ficient strategies to prevent and control the spread of many dis- 

eases, such as measles, pertussis, influenza, Hepatitis B virus(HBV) 

and human tuberculosis (TB) (See [1–3] ). The spectacular success- 

ful cases was seen to be eradication of small-pox in 1977 (See 

[4] ). Many models of ordinary differential equations (ODEs) have 

been proposed to better understand how vaccination impact dis- 

ease transmission dynamics and their prevention (See [5–9] ). For 

example, Gao et al. in [7] formed an pulse vaccination SEIRS model 

and discussed the condition for eradicating the disease, Liu and his 

coauthors in [8] built two SVIR epidemic models to investigate the 

immunity impacts by impulsive and continuous strategies. Most of 

these compartmental models are formulated as ODEs under the 

base assumption that individuals in each compartment are homo- 

geneously mixed. 

It has been recognised that the waning of vaccine-induced im- 

munity has been one of the principal reasons for reemergence of 

some children epidemic such as pertussis, rubella, measles and 

chickenpox (See [10] ). Naturally, researchers incorporate vaccina- 

tion and the waning immunity in modeling disease dynamics (See 

[10–15] ). As a matter of fact, a suitable assumption on the wan- 
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ing of vaccine-induced immunity is that immunity depends on age 

of an individual for vaccination. Taking the age of vaccination into 

consideration, researchers obtain many models of partial differen- 

tial equations (PDEs). Here, we just list a few of the recent works 

(See [10–18,26,29–33,36] ). It is known that the period for individu- 

als in latent compartment is different from one to one, which relys 

on distinct infectious disease and individuals situation. For tuber- 

culosis, the latent period may takes months, years or even decades 

before one being infectious (See [24] ). Furthermore, for the infec- 

tious, such as tuberculosis and herpes virus infection, the removed 

individual often have higher relapse rate (See [23,24] ). Accordingly, 

the reactivation is regarded as an important character for both 

some animal and human diseases in mathematical modeling (See 

[12,25] ). Therefore, it is necessary to consider the sojourn time and 

relapse structure in modeling. 

Another significant aspect in disease modeling is comprehend- 

ing how the infected and the susceptible population mutual effect 

and impact the disease dynamics (See [19] ). Mathematically, these 

can be captured by the incidence rate of the disease, defined as 

the average number of new cases of a disease per unit period off

cf time. Models with standard incidence rates and bilinear (namely, 

mass action) incidence rates have extensively studied recently. Liu 

et al. in [12] proposed an age-dependent epidemic model with bi- 

linear incidence and investigate how the basic production num- 

ber determines the global stability of epidemic dynamics. For more 
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Fig. 1. Flow diagram of our model, where �ω 1 V , �ω 2 E and �ω 3 R represent ∫ ∞ 
0 ω 1 (a ) v (t, a ) da, 

∫ ∞ 
0 ω 2 (b) e (t, b) db and

∫ ∞ 
0 ω 3 (c) r(t, c) dc, respectively. 

models with different nonlinear incidence rate, we here only refer 

to literatures [11,13,14,20–22] . 

Motivated by the previous works of Liu and Wang [12,13] , 

there have been few literatures investigating the effects of age- 

dependent vaccination, latency and relapse on global stability of 

models with nonlinear incidence so far. Moreover, It is stressed 

that the vaccination of susceptible population plays a central role 

in the evolution of vaccine-induced immunity [26] . So, to under- 

stand the effect of these aspects on the dynamics of the epidemics, 

we propose and investigate an age-dependent SVEIR model of PDEs 

coupled with ODEs in this paper which takes these elements under 

consideration. 

This work is organized as follows. In Section 2 , we propose 

a novel age-dependent SVEIR model with ages of vaccination, la- 

tency and relapse. In Section 3 , some preliminaries for our main 

results are presented, such as the existence of equilibria and the 

basic reproduction number for the model. In Section 4 , we investi- 

gate uniform persistence of the model. We analyse the global sta- 

bility of the disease-free equilibrium and endemic equilibrium in 

Section 5 and Section 6 , respectively. Finally, simulations and dis- 

cussions are made in Section 7 . 

2. Model formulation 

The total population under consideration is divided into five 

disjoint subclasses: the susceptible ( S ), vaccinated ( V ), latent ( E ), 

infectious ( I ) and recovered ( R ), respectively. Let S ( t ) be the num- 

ber of the susceptible at time t, v ( t, a ) be the density of the vac- 

cinated at time t with vaccination age a, e ( t, b ) be the density of 

the latent at time t with latent age b, I ( t ) be the number of the 

infectious at time t , and r ( t, c ) be the density of the recovered at 

time t with relapse age c . 

All recruitment into the population is into the susceptible class 

and occurs with a constant flux �. Then they enter into a com- 

partment where individuals are exposed upon the disease but not 

yet infected, this compartment is often called latent part. Assume 

that the incidence rate is nonlinear form and all new infections en- 

ter the latent class at latent age zero. It is also assumed that the 

newly vaccinated individuals enter the vaccinated class V at vac- 

cination age zero, then the total number of vaccinated individuals 

within the vaccinated subclass at time t is 
∫ + ∞ 

0 v (a, t) da. Suppose 

the vaccine-induced immunity wanes rate is dependent on age of 

vaccination and given by ω 1 ( a ), thus the total number of waning 

of immunity which progress into the susceptible class alive reads ∫ + ∞ 

0 ω 1 (a ) v (t, a ) da . 

Similarly, for the density of the latent e ( t, b ) at time t with 

latent age b and the density of the recovered r ( t, c ) at time t 

with relapse age c , the total number of latent individuals within 

the latent subclass and the total number of recovered individu- 

als within the recovered subclass at time t are 
∫ + ∞ 

0 e (b, t) db and ∫ + ∞ 

0 r(c, t) dc, respectively. The age-dependent removal rate from 

latent subclass and relapse rate from removed subclass are given 

by ω 2 ( b ) and ω 3 ( c ), respectively. Thus the quantity of individu- 

als who progress and the relapse into the infectious class alive 

read 

∫ + ∞ 

0 ω 2 (b) e (t, b) db and 

∫ + ∞ 

0 ω 3 (c) e (t, c) dc, respectively. Our 

model is described by the following diagram in Fig. 1 . 

From Fig. 1 we can establish the following system of ODEs cou- 

pled with PDEs: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS(t) 

dt 
= � − (μ + ξ ) S(t) − βS(t ) f (I(t )) + 

∫ ∞ 

0 

ω 1 (a ) v (t, a ) da, 

∂v (t, a ) 

∂t 
+ 

∂v (t, a ) 

∂a 
= −(ω 1 (a ) + μ) v (t, a ) , 

∂e (t, b) 

∂t 
+ 

∂e (t, b) 

∂b 
= −(ω 2 (b) + μ) e (t, b) , 

dI(t) 

dt 
= 

∫ ∞ 

0 

ω 2 (b) e (t, b) db −(μ+ δ+ k ) I + 

∫ ∞ 

0 

ω 3 (c) r(t, c) dc, 

∂r(t, c) 

∂t 
+ 

∂r(t, c) 

∂c 
= −(ω 3 (c) + μ) r(t, c) 

v (t, 0) = ξS(t ) , e (t , 0) = βS(t ) f (I(t )) , r(t , 0) = kI(t) , t ≥ 0 

S(0) = S 0 , v (0 , a ) = v 0 (a ) , e (0 , b) = e 0 (b) , I(0) = I 0 , 

r(0 , c) = e 0 (c) , 

(1) 

where S 0 , I 0 ∈ R + = [0 , ∞ ) , and v 0 (a ) , e 0 (b) , e 0 (c) ∈ L 1 + , where 

L 1 + = L 1 + (0 , ∞ ) denotes the space of all Lebesgue integrable func- 

tions φ : (0 , ∞ ) → R + . Positive constants ξ , μ, δ and k are the vac- 

cination rate of the susceptible individuals, the natural death rate 

of population, the disease induced death rate and the recovery rate 

from the infectious class, respectively. The incidence rate of a dis- 

ease, defined as the average number of new cases per unit of time, 

we here take the nonlinear rate βSf ( I ), where β is the probability 

of infection by every time contact. It is biologically motivated that 

we make the following assumptions. 

(A 1 ) a ∈ [0 , ̂  a ] , b ∈ [0 , ̂  b ] and c ∈ [0 , ̂  c ] , where ˆ a , ̂  b and ˆ c are the 

maximum ages of vaccination, latency and relapse, respectively. If 

ˆ a = ∞ , ̂  b = ∞ and ˆ c = ∞ , then v (t, a ) = 0 , e (t, b) = 0 and r(t, c) = 

0 for all enough large a, b and c , respectively. 

(A 2 ) Functions ω i (l) ∈ L + 
1 

are bounded with essential bounds ω̄ i 

and Lipschitz continuous with Lipschitz constants M ω i for all l ≥ 0 

and i = 1 , 2 , 3 . 

(A 3 ) There exists a constant μ0 > 0 such that ω i ( l ) ≥μ0 for all 

l ≥ 0 and i = 1 , 2 , 3 . 

(A 4 ) Function f ( I ) is nonnegative and twice differentiable for all 

I ∈ [0, ∞ ) with f (I) = 0 if and only if I = 0 , f ′ ( I ) ≥ 0 and f ′′ ( I ) ≤ 0 for 

all I ≥ 0. 

Remark 1. It is clear that for the bilinear incidence rate f (I) = I

and the saturated incidence rate f (I) = 

I 
1+ αI , where α > 0 is a con- 

stant, assumption (A 4 ) is satisfied. 

3. Preliminaries 

The phase space X for model (1) is defined by X = R + × L 1 + ×
L 1 + × R + × L 1 + equipped with the norm by 

‖ (x 1 , x 2 , x 3 , x 4 , x 5 ) ‖ X = | x 1 | + 

∫ ∞ 

0 

| x 2 (a ) | da + 

∫ ∞ 

0 

| x 3 (b) | db 

+ | x 4 | + 

∫ ∞ 

0 

| x 5 (c) | dc 

for any (x 1 , x 2 , x 3 , x 4 , x 5 ) ∈ X . The initial conditions in model 

(1) can be rewritten as x 0 = (S 0 , v 0 (·) , e 0 (·) , I 0 , r 0 (·)) ∈ X . It is eas- 

ily see that for model (1) 

v (0 , 0) = ξS 0 = v 0 (0) , e (0 , 0) = βS 0 f (I 0 ) = e 0 (0) , c(0 , 0) 

= kI 0 = c 0 (0) . (2) 

The standard existence, uniqueness, nonnegativity and 

continuability of solutions for model (1) are satisfied 

[27] . Thus, model (1) has a unique nonnegative solution 

F(t, x 0 ) = (S(t ) , v (t , ·) , e (t, ·) , I(t) , r(t, ·)) for all t ≥ 0 with the 

initial condition F(0 , x 0 ) = x 0 ∈ X . We have 
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