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a b s t r a c t 

Chaotic dynamics and synchronization of fractional-order systems have attracted much attention recently. 

Based on stability theory of fractional-order systems and stability theory of integer-order systems, this 

paper deals with the problem of coexistence of various types of synchronization between different di- 

mensional fractional-order chaotic systems. To illustrate the capabilities of the novel schemes proposed 

herein, numerical and simulation results are given. 
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1. Introduction 

Synchronization, one of the most universal collective rhythms, 

has attracted a great deal of interest among researchers from 

various fields due to its potential applications in physics and 

engineering since the pioneering work by Pecora and Carroll 

[1] . The research efforts have been devoted to chaos control and 

chaos synchronization problems in nonlinear science because of 

its extensive applications [2–6] . In most real systems, the synchro- 

nization is carried out even though the oscillators have different 

orders. One example is the synchronization that occurs between 

heart and lung [7] , where one can observe that both circulatory 

and respiratory systems behave in synchronous way, but their 

models are essentially different and they have different order. 

So, the study of synchronization for strictly different dynamical 

systems and different order dynamical systems is both very im- 

portant from the perspective of control theory and very necessary 

from the perspective of practical application. 

Similar to a nonlinear differential system, nonlinear fractional 

differential system may also have complex dynamics such as chaos 
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and bifurcation. Recent studies have shown effort s to explore 

synchronization behavior of coupled fractional-order systems 

[8–11] . However, it is difficult to explicitly construct Laypunov 

function for fractional differential systems. Therefore, in many 

literatures, synchronization among fractional-order systems is 

only investigated through numerical simulations that are based 

on the stability criteria of linear fractional-order systems, such 

as the work presented in [12–18] , or based on Laplace transform 

theory, such as the work presented in [19–21] . Fractional chaos 

synchronization has great potential applications in secure commu- 

nication and cryptography [22,23] . Furthermore, some hardware 

implementations of fractional-order systems have been proposed 

in the literature [24–26] . 

Recently, an interesting type of synchronization between 

chaotic and hyperchaotic systems has been introduced [27] , in 

which each master system state synchronizes with a linear com- 

bination of slave system states. The proposed scheme is called 

inverse full state hybrid projective synchronization (IFSHPS). Also, 

a new type of generalized synchronization to synchronize noniden- 

tical chaotic systems with different dimensions has been proposed 

in [28] . This type of synchronization was called inverse generalized 

synchronization (IGS). IGS is characterized by the existence of a 

functional relationship ϕ between the state Y of the slave system 

and the state X of the master system, so that X = ϕ ( Y ) after 
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a transient time. Not long ago, a new approach to synchronize 

different dimensional chaotic system by using two scaling matrices 

was introduced. The method was called � − � synchronization 

[29,30] . In [31] , � − � synchronization was used to synchronize 

different dimensional fractional-order chaotic systems by using 

scaling constant matrix and scaling function matrix. 

When studying the synchronization of chaotic systems, an 

interesting phenomenon that may occur is the co-existence of 

several synchronization types. Recently, the problem of coexis- 

tence of different types of synchronization has been introduced in 

many studies [32–38] . The co-existence of synchronization types 

is very useful in secure communication and chaotic encryption 

schemes. Based on these considerations, this paper presents new 

approaches to rigorously study the co-existence of inverse full 

state hybrid projective synchronization (IFSHPS), � − � syn- 

chronization, inverse generalized synchronization (IGS) and Q-S 

synchronization between chaotic and hyperchaotic fractional-order 

systems. By using fractional-order Lyapunov stability theorem and 

Lyapunov stability theory of integer-order systems, the paper, first, 

analyzes the proposed synchronization scheme when the master 

system is an incommensurate fractional system and the slave 

system is a 4-D commensurate fractional system. Successively, 

stability theory of fractional-order systems and stability theory of 

linear integer-order 3-D systems are used to prove the mentioned 

synchronization scheme between 3-D incommensurate fractional 

master system and 4-D incommensurate fractional slave system. 

Numerical examples of co-existence of synchronization types are 

illustrated, with the aim to show the effectiveness of the novel 

approaches developed herein. 

2. Preliminaries 

To discuss fractional differential systems, some definitions and 

properties of Caputo fractional differential operator and some 

results on the stability of fractional differential systems from the 

literature which are relevant to our work are introduced. 

Definition 1. The Riemann–Liouville fractional integral operator of 

order p > 0 of the function f ( t ) is defined as [39] , 

J p f (t) = 

1 

�(p) 

∫ t 

0 

(t − τ ) p−1 f (τ ) dτ, t > 0 . (1) 

where � denotes Gamma function. 

Definition 2. The Caputo fractional derivative of f ( t ) is defined as 

[40,41] , 

D 

p 
t f (t) = J m −p 

(
d m 

dt m 

f (t) 

)
= 

1 

�(m − p) 

∫ t 

0 

f (m ) (τ ) 

(t − τ ) p−m +1 
dτ, (2) 

for m − 1 < p ≤ m, m ∈ N , t > 0 . 

Lemma 1. The Laplace transform of the Caputo fractional derivative 

rule reads [42] 

L 
(
D 

p 
t f ( t ) 

)
= s p F ( s ) −

n −1 ∑ 

k =0 

s p−k −1 f ( k ) ( 0 ) , 

( p > 0 , n − 1 < p ≤ n ) , (3) 

where L ( f ( t ) ) = F ( s ) = 

∫ ∞ 

0 e −st f (t ) dt . Particularly, when 0 < p ≤ 1, 

we have 

L 
(
D 

p 
t f ( t ) 

)
= s p F ( s ) − s p−1 f ( 0 ) . (4) 

Lemma 2. The Laplace transform of the Riemann–Liouville fractional 

integral rule satisfies [43] 

L ( J q f (t) ) = s −q F ( s ) , ( q > 0 ) . (5) 

Lemma 3. The fractional-order linear system [44] 

D 

p 
t X ( t ) = AX ( t ) , (6) 

where D 

p 
t = 

[
D 

p 1 
t , D 

p 2 
t , . . . , D 

p n 
t 

]
, 0 < p i ≤ 1, ( i = 1 , 2 , . . . , n ) , 

X ( t ) = ( x i ( t ) ) 1 ≤i ≤n and A ∈ R 

n × n , is asymptotically stable if all 

roots λ of the characteristic equation 

det 
(
diag 

(
λMp 1 , λMp 2 , . . . , λMp n 

)
− A 

)
= 0 , (7) 

satisfy | arg ( λ) | > 

π
2 M 

, where M is the least common multiple of the 

denominators of p i ’s. 

Lemma 4. The trivial solution of the following fractional-order 

system [45] 

D 

p 
t X ( t ) = F ( X ( t ) ) , (8) 

where D 

p 
t = 

[
D 

p 
t , D 

p 
t , . . . , D 

p 
t 

]
, 0 < p ≤ 1, and F : R 

n → R 

n , is asymp- 

totically stable if there exists a positive definite Lyapunov function V 

such that D 

p 
t V ( X ( t ) ) < 0 , for all t > 0 . 

Lemma 5. Let X(t) = ( x i ( t ) ) 1 ≤i ≤n ∈ R 

n , where x i ( t ) be continuous 

and derivable function for i = 1 , 2 , · · · , n . Then ∀ p ∈ ]0, 1] and ∀ t > 0 

[46] 

1 

2 

D 

p 
t 

(
X 

T (t) X (t) 
)

≤ X 

T (t) D 

p 
t ( X (t) ) . (9) 

3. Definitions of IFSHPS, � − � synchronization, IGS and Q-S 

synchronization 

Consider the following master and slave systems 

D 

p 
t X (t) = F (X ( t ) ) , (10) 

D 

q 
t Y (t) = G (Y (t)) + U, (11) 

where X(t) = ( x i (t) ) 1 ≤i ≤n and Y (t) = ( y i (t) ) 1 ≤i ≤m 

are the states 

vector of the master system (10) and the slave system (11) , respec- 

tively, D 

p 
t = 

[
D 

p 1 
t , D 

p 2 
t , . . . , D 

p n 
t 

]
and D 

q 
t = 

[
D 

q 1 
t , D 

q 2 
t , . . . , D 

q m 
t 

]
ar e 

Caputo fractional derivative operators, where p 
i 

( i = 1 , 2 , . . . , n ) 
and q 

i 
( i = 1 , 2 , . . . , m ) are rational numbers between 0 and 1, F : 

R 

n → R 

n , G : R 

m → R 

m and U = ( u i ) 1 ≤i ≤m 

is a control law. 

Definition 3. The master system (10) and the slave system (11) are 

said to be inverse full state hybrid projective synchronized (IF- 

SHPS) if there exists controllers u i , i = 1 , 2 , . . . , m, and given real 

numbers αj , j = 1 , 2 , . . . , m, such that the synchronization errors 

e i (t) = 

m ∑ 

j=1 

α j y j ( t ) − x i ( t ) , i = 1 , 2 , . . . , n, (12) 

satisfy that lim t→∞ 

e i (t) = 0 . 

Definition 4. The master system (10) and the slave system (11) are 

said to be � − � synchronized in the dimension d if there exists 

a controller U = ( u i ) 1 ≤i ≤m 

, a constant matrix � = 

(
�i j 

)
d×m 

and a 

function matrix ( �ij ( t )) d × n such that the synchronization error 

e (t) = �Y ( t ) − �( t ) X ( t ) , (13) 

satisfies that lim t→∞ 

e (t) = 0 . 

Definition 5. The master system (10) and the slave system 

(11) are said to be inverse generalized synchronized if there exists 

a controller U = ( u i ) 1 ≤i ≤m 

and given a differentiable function ϕ: 

R 

m → R 

n such that the synchronization error 

e (t) = ϕ ( Y ( t ) ) − X ( t ) , (14) 

satisfies that lim t→∞ 

e (t) = 0 . 

Definition 6. The master system (10) and the slave system (11) are 

said to be Q-S synchronized in the dimension d if there exists a 
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