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a b s t r a c t 

Social punishment, a mechanism that cooperative individual spends a little cost to penalize defector, is 

verified to be an effective mechanism for promoting the evolution of cooperation. In this paper, we intro- 

duce conditional punishment, the willingness to punish p , which decides whether to carry out penalty. 

It is shown that cooperative behavior is significantly enhanced when punishers are taken into account 

and the frequency of cooperation increases with p . In addition, we find out the protective effect of pun- 

ishers on evolution of cooperation from a micro point of view. We hope our work may shed light on 

understanding of cooperative behavior in society. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Cooperation is an ubiquitous phenomenon in the real world, 

ranging from ecosystems to social systems [1,2] . In recent years, 

the emergence and maintenance of cooperation have attracted 

considerable attention from multiple disciplines and have made 

great breakthroughs and progress. However, there are still some 

questions that remain to be solved [3,4] . 

In this case, a classical mathematical framework named evolu- 

tionary game theory, which is widely used, has provided a pow- 

erful tool to explore the evolution of cooperative behavior [5–

8] . Furthermore, the prisoner’s dilemma (PD) game, as a typical 

metaphor, has also been investigated through pairwise interaction 

extensively [9,10] . In the PD, two players make a choice that de- 

termines payoffs between cooperation (C) and defection (D). They 

will receive the reward R if both of them choose to cooperate and 

the punishment P for mutual defection. If a cooperator encounters 

a defector, the former will get the sucker’s payoff S while the lat- 

ter will obtain the temptation to defect T . These payoffs satisfy the 

order T > R > P > S and 2 R > T + S, which means that defection is 

the best choice regardless of the opponent’s strategy and will give 

rise to the extinction of cooperation eventually. However, mutual 

cooperation will lead to more total benefits than mutual defection. 

In order to solve this dilemma, a lot of novel mechanisms have 

been proposed [11–21] . The seminal works by Nowak and May 

found that cooperators could prevail via forming compact clusters 

on complex networks, which is regarded as network reciprocity on 
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account of spatial structure [22,23] . Moreover, the theory of net- 

work reciprocity motivates plenty of interesting study to resolve 

the dilemma. For instance, the influence of environment [24,25] , 

asymmetric [26] , reputation [27] , aspiration [28] , the heterogene- 

ity of the spatial structure and asynchronous update allow the co- 

operation to prevail even when temptation is pretty high. In addi- 

tion, the study has also expanded to different topologies, such as 

small-world network, scale-free network, random regular network, 

multilayer network and so on [29,30] . 

Among above mechanisms, what attracts our interests most is 

social punishment, which has received relatively little attention in 

PD until now. Social punishment is a behavior that punishes free 

riders by cooperators, which is a common phenomenon in the real 

world. During this process, cooperators will spend a little cost to 

punish defectors by a fine. Most of this work have already investi- 

gated in public goods (PG) games, where each member of a group 

starts with an endowment and decides how much to contribute 

to the public pool [31–33] . Under this setup, punishment in PG 

games is divided into peer punishment and pool punishment. Nev- 

ertheless, some studies introduce social punishment into PD game 

recent years [34,35] . For example, Wang et al. found that social 

punishment can promote cooperation obviously in PD and snow- 

drift (SD) game no matter with which network structure. However, 

punishers have to pay for a small cost themselves, so someone 

wouldn’t like to punish the free riders. Based on this, we introduce 

the willingness to punish p (0 ≤ p ≤ 1) to control the proportion of 

punishers and investigate its influence. 

In this paper, we will introduce a probability to command the 

social punishment and explore the evolution of cooperation under 

the setting that punishment is implemented with a fixed probabil- 
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Table 1 

Payoff matrix of prisoner’s dilemma 

with social punishment. C, D and P rep- 

resent cooperation, defection and pun- 

ishment respectively. Here, γ stands for 

the cost of punishment and β is the 

fine assumed by defectors. 

C D P 

C R S R 

D T P T - β

P R S - γ R 

ity. In the rest of this paper, we will first describe the evolutionary 

PD games with social punishment and the details of our mecha- 

nism in the next section. Section 3 is devoted to the presentation 

of results, whereas the main conclusion will be given in the last 

section. 

2. Model 

We introduce the willingness to punish into prisoner’s dilemma 

(PD) game and consider evolutionary games on a regular L × L 

square lattice with periodic boundary condition. Each player is ran- 

domly designed as cooperator (C), defector (D) or punisher (P) with 

equal probability initially. That is to say, each strategy covers one- 

third of the square lattice. Without loss of generality, we set R = 1 , 

T = b and P = S = 0 , where 1 < b ≤ 2 ensures a proper payoff rank- 

ing ( T > R > P ≥ S ) of a simply and weak version. In particular, co- 

operators that punish defectors are introduced as the third com- 

peting strategy, that is, punishers (P). Punishers will act as cooper- 

ators if they encounter cooperators and themselves. However, pun- 

ishers will cost γ to punish defectors by a fine β additionally with 

a probability p when in the interaction with defectors. The pay- 

off matrix is displayed in Table 1 . Otherwise, punishers will always 

play the role of cooperators. 

The standard Monte–Carlo (MC) simulation procedure com- 

prises the following elementary steps. First, focal player x obtains 

his payoff P x that calculated in accordance with above-mentioned 

by interacting with his four nearest neighbors at each time step, 

P x = 

∑ n 

i 
P i , (1) 

where n = 4 denotes the interaction neighborhood size of player x . 

Then one randomly chosen neighbor y also acquires his payoff P y 
in the same way. If P x > P y , player x will remain his strategy in the 

next time step. On the contrary, player x will adopt the strategy s y 
of player y with a probability proportional to the maximum payoff

difference while P x < P y : 

W ( s x ← s y ) = 

P y − P x 

n × �
, (2) 

where � represents the maximum possible payoff difference be- 

tween two players. 

During one full MC step, each player has a chance on aver- 

age to update his strategy and change the game he played as de- 

scribed above. The simulation result is carried out on 100 × 100 

lattices with periodic boundary. The cooperator density ρC was de- 

termined by averaging the last 5 × 10 3 steps over total 5 × 10 4 MC 

steps. Furthermore, final data results from averaging over 20 real- 

izations. 

3. Results 

First, we check the relationship between the fraction of cooper- 

ation ρc and the temptation to defect b for different value parame- 

ter p and given β = 0 . 5 , γ = 0 . 1 in Fig. 1 . When p equal to zero, it 

returns back to traditional model that there is no punisher exist in 

Fig. 1. The density of cooperators ( ρc ) as function of b for different p. When p = 0 

(traditional version), cooperators will diminish even b is small. With the increase of 

parameter p , the cooperators can resist the invasion of defectors effectively through 

the influence of punishers. All the results are obtained for β = 0 . 5 , γ = 0 . 1 . 

Fig. 2. Time evolution of the cooperative behavior ( ρc ) on square lattices for p = 0, 

0.4, 0.6, 1 from bottom to up. With the increase of p, the frequency of cooper- 

ators increases obviously at stable state and it even dominant the lattice when 

p = 1 , defectors have no chance to survive. All the results are obtained for b = 1.28, 

β = 0 . 5 , γ = 0 . 1 . 

the population. So, the fraction of cooperators down quickly with 

the increase of b , even diminish when b is small. However, when 

we consider the willingness to punish p , cooperators can survive 

from defectors’ invasion for large b . With the increase of param- 

eter p , cooperative behavior is promoted effectively. When p = 1, 

all punishers will punish the selfish individual, thus cooperators 

can keep a high level. Furthermore, large p means a higher punish 

willingness, and these results totally suggest that large proportion 

punishers can promote cooperation. Especially, the larger the value 

of p , the higher is the level of cooperation. 

In order to investigate the influence of punish willingness on 

the evolution of cooperation, we show the time course of ρc 

for given b = 1 . 28 , β = 0 . 5 and γ = 0 . 1 with different p in Fig. 2 . 

Initially, cooperators, defectors and punishers are randomly dis- 

tributed on square lattice. When p = 0 (traditional version), the 

density of cooperators down rapidly and go extinct with the in- 

crease of time steps, because defectors is more successful than co- 

operators. When p > 0, the density of cooperators will down to a 
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