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a b s t r a c t 

The spatial distributions of cities fall into two groups: one is the simple distribution with characteris- 

tic scale (e.g. exponential distribution), and the other is the complex distribution without characteristic 

scale (e.g. power-law distribution). The latter belongs to scale-free distributions, which can be modeled 

with fractal geometry. However, fractal dimension is not suitable for the former distribution. In contrast, 

spatial entropy can be used to measure any types of urban distributions. This paper is devoted to gener- 

alizing multifractal parameters by means of dual relation between Euclidean and fractal geometries. The 

main method is mathematical derivation and empirical analysis, and the theoretical foundation is the dis- 

covery that the normalized fractal dimension is equal to the normalized entropy. Based on this finding, 

a set of useful spatial indexes termed “generalized multifractal indicators” are defined for geographical 

analysis. These indexes can be employed to describe both the simple distributions and complex distribu- 

tions. The generalized multifractal indexes are applied to the population density distribution of Hangzhou 

city, China. The calculation results reveal the feature of spatio-temporal evolution of Hangzhou’s urban 

morphology. This study indicates that fractal dimension and spatial entropy can be combined to produce 

a new methodology for spatial analysis of city development. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Cities and systems of cities are complex systems, but a com- 

plex system has its simple aspects. In order to understand city de- 

velopment or urban evolution, we must explore the spatial dis- 

tribution (e.g., urban density distribution) and the related prob- 

ability distribution (e.g., rank-size distribution) of cities. The spa- 

tial distributions and probability distributions can be divided into 

two types: one is the simple distribution with characteristic scales 

such as exponential distribution, and the other is complex dis- 

tribution without characteristic scales such as power-law distri- 

bution [3,13,47] . The complex distribution without characteristic 

scales can be termed scale-free distribution or scaling distribu- 

tion. One of powerful tools for scaling analysis is fractal geometry 

[36] . Fractal theory has been applied to urban studies for a long 

time [8,28,41] . The fractal city studies lead to new urban theory. 

However, the target of complexity science is not for complexity it- 

self, but for the inherent relationships between complex phenom- 

ena and simple rules. Therefore, in urban geographical studies, we 

should explore both the simple and complex aspects and the con- 

nection between spatial complexity and simplicity. The limitation 

of monofractal method is that it is not suitable for simple distri- 

butions. The dimension of a non-fractal distribution is a Euclidean 
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dimension and provides us with no geographical spatial informa- 

tion. 

However, it is possible to generalize multifractal measures to 

describe the spatial distributions with characteristic scale. The new 

indexes are not real multifractal parameters, but bear analogy with 

multifractal parameters. The main reasons are as follows. First, 

multifractal parameters are based on entropy functions, and en- 

tropy can be employed to measure both fractal and non-fractal dis- 

tributions. Second, multifractal measures take on several parame- 

ter spectrums, and the spectrums compose both fractal parame- 

ters and non-fractal parameters. Third, multifractal dimensions are 

mainly generalized fractal dimension, and Euclidean dimension can 

be treated as special cases of fractal dimension. If we find a pa- 

rameter link between simple distributions and complex distribu- 

tions, we will be able to generalize multifractal theory and ap- 

ply it to varied spatial distributions. The link rests with the con- 

cept of normalized entropy. In fact, all the spatial distribution data 

can be converted into probability distribution data, and based on 

a probability distribution, entropy can be evaluated. Entropy is a 

measure of complexity [4,5,23] . Hausdorff dimension proved to be 

equivalent to Shannon entropy and Kolmogorov complexity [43] . 

The breakthrough point of developing fractal measures is entropy 

functions and the association of entropy with fractal dimension. 

A recent finding is that the normalized fractal dimension is the- 

oretically equal to the normalized entropy under certain condi- 

tions [11,15] . Thus, the key to solving the problem is to establish a 
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methodological framework for measurements of entropy and frac- 

tal dimension. 

The methodological framework can be defined by analogy with 

the box-counting method in fractal theory. Thus, spatial entropy 

can be naturally associated with fractal dimension. The concept 

and measurement of spatial Shannon entropy has been introduced 

to geographical analysis for many years [6,7] . More general spatial 

entropy is the spatial Renyi entropy [18,24] . Both Renyi entropy 

and fractal dimension can be employed to measure urban sprawl 

[39,48] , and the similar functions suggest the intrinsic relation be- 

tween entropy and fractal dimension. The traditional spatial en- 

tropy is quantified by means of geographical systems of zones. A 

zonal system always takes on an irregular network. Based on the 

irregular nets, entropy cannot be converted into fractal dimension. 

However, if we use regular grid to replace the irregular network, 

we will be able to calculate both spatial entropy and fractal di- 

mension. The functional box-counting method is based on the re- 

cursive process of regular grid. This method is proposed by Love- 

joy et al. [35] and consolidated by Chen [10] , and can be applied 

to both entropy and fractal dimension measurements. Based on 

the functional box-counting method, the normalized fractal dimen- 

sion proved to equal the normalized entropy [15] . Based on this 

equivalence relationship, we can extend the multifractals parame- 

ters and obtain useful spatial indexes. This paper is devoted to de- 

veloping the methodology of spatial analysis using spatial entropy 

and fractal measures. The functional boxes will be replaced by sys- 

tems of concentric rings. The rest parts are organized as follows. 

In Section 2 , based on the relationships between spatial Renyi en- 

tropy and general correlation dimension, the multifractal measures 

are generalized to yield a set of new spatial measurements for ur- 

ban studies; In Section 3 , the generalized multifractal parameters 

are applied to the city of Hangzhou, China, to make a case study; 

In Section 4 , the related questions are discussed, and finally the 

work is concluded by summarizing the main points. The methodol- 

ogy developed in this article may be used to characterize the spa- 

tial structure of other natural and social systems. 

2. Models 

2.1. Spatial Renyi entropy 

It is necessary to clarify the internal relation between spatial 

entropy and fractal dimension of cities. Both entropy and fractal 

dimension can serve for the space-filling measures of city develop- 

ment. A central region of a city has higher fractal dimension values 

(Feng and Chen, 2010), and accordingly, its entropy value is higher 

than the periphery region [24] . The common fractal dimension for- 

mulae are all based on entropy functions. The generalized corre- 

lation dimension of multifractals is defined on the base of Renyi’s 

entropy [42] , which is formulated as follows 

M q = − 1 

q − 1 

ln 

N ∑ 

i =1 

P i 
q 
, (1) 

where q denotes the moment order, M q refers to Renyi’s entropy 

of order q, P i refers to the occurrence probability of the i th fractal 

copy, and N to the number of fractal copies ( i = 1, 2, 3,…, N ). A 

fractal copy can be treated as a fractal unit in a fractal set. Thus the 

generalized correlation dimension can be given as [25,31,37,49] 

D q = −M q (ε) 

ln ε 
= 

1 

q − 1 

ln 

∑ N(ε) 
i =1 

P i ( ε ) 
q 

ln ε 
, (2) 

in which ε denotes the linear size of fractal copies at given level, 

and N ( ε) and P i ( ε) refers to the corresponding fractal copy num- 

ber and occurrence probability. If we use a box-counting method 

to make spatial measurements, then ε represents the linear size of 

boxes, N ( ε) refers to the number of nonempty boxes, and P i ( ε) to 

the proportion of geometric objects in the i th box. Based on func- 

tional box-counting method, the normalized fractal dimension D q 
∗

proved to be equal to the normalized entropy M q 
∗ [11,15] , that is 

D 

∗
q = 

D q − D min 

D max − D min 

= 

M q − M min 

M max − M min 

= M 

∗
q , (3) 

where D max refers to the maximum fractal dimension, D min to the 

minimum fractal dimension, M max refers to the maximum entropy, 

and M min to the minimum entropy. In theory, for the fractal cities 

defined in a 2-dimensional embedding space [8] , the basic param- 

eters are as follows: D max = 2, D min = 0, M max = ln N T , M min = 0, and 

N T is total number of all possible fractal units or boxes (nonempty 

boxes and empty boxes) in a study area. Thus, Eq. (3) can be re- 

duced to 

D 

∗
q = 

D q 

D max 
= 

M q 

M max 
= M 

∗
q , (4) 

which is valid only for fractal systems. This suggests that the ratio 

of the actual fractal dimension to the maximum fractal dimension 

is theoretically equal to the ratio of the actual entropy to the maxi- 

mum entropy of a fractal object. The relation between entropy and 

fractal dimension is supported by the observational data of cities 

such as Beijing and Hangzhou [15] . 

2.2. Generalized multifractal parameters 

Fractal dimension can be only applied to fractal objectives, and 

we cannot use fractal geometry to model the non-fractal phenom- 

ena. In fact, a non-fractal system can be described with the com- 

mon measures such as length, area, volume, and density rather 

than fractal dimension. In other words, the standard fractal param- 

eters have strict sphere of application: irregular and self-similar 

patterns, nonlinear and recursive process, and complex and scale- 

free distributions [10] . In contrast, entropy can be utilized to mea- 

sure any distributions of cities, including fractals and non-fractals. 

However, for the fractal distributions, entropy values depend on 

spatial scales of measurements. Fortunately, using Eq. (4) , we can 

generalize fractal measurements, and define a set of quasi-fractal 

parameters for spatial analysis. In fact, for non-fractals, we have 

M q 
∗= M q / M max , but we have no D q 

∗= D q / D max because D q is not 

existent. Now, we can define a general normalized fractal parame- 

ter as follows 

D 

∗
q = M 

∗
q = 

M q 

M max 
, (5) 

in which M q and M max are measurable. For a non-fractal object, 

the maximum dimension is just the Euclidean dimension of the 

embedding space, that is D max = d . Thus we can further define an 

apparent multifractal dimension as below: 

D q = D max D 

∗
q = dM 

∗
q = 

2 M q 

M max 
, (6) 

which can be theoretically demonstrated [15] . The word “apparent”

means “(a thing) that seems to be real or true but may not be”, 

and apparent multifractal measures are not real multifractal mea- 

sures. Actually, the word of apparent is adopted here to avoid con- 

flicts with existing term of “generalized correlation dimension” in 

the literature. If a city is examined in a 2-dimensional space, then 

D max = d = 2. In fractal theory, the mass exponent can be given by 

τq = (q − 1) D q , (7) 

in which τ q denotes the common mass exponent. Accordingly, we 

can define a generalized mass exponent such as 

τq = (q − 1) dM 

∗
q = 

2(q − 1) M q 

M max 
, (8) 
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