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The correlation dimensions in the financial market are calculated and used as a measure to study the
cluster structure in the correlation coefficient matrix. First, based on the existing model, we present a
toy model. Using the model-generated data, we find that the clearer cluster structure corresponds to a
smaller dimension. It implies that the correlation dimension can be used as a measure of the cluster
structure in the correlation coefficient matrix. Finally, we use the algorithm to compute the clusters in
2010 MSC: the real market and verify the previous empirical evidence. The results show that the cluster structure in
00-01 the financial correlation coefficient matrix may change with time. The correlation dimension is smaller
99-00 after the financial crisis, indicating that the cluster structure is clearer after the financial crisis.
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1. Introduction

In recent years, the clustering problem of time series has been
widely studied and used in financial time series analysis. In the
past studies, some clustering algorithms for time series have been
proposed [1,2].

In this paper, we study the dynamics of the cluster structure
in the financial correlation coefficients matrices. In our study, the
correlation dimension is used to detect the change of cluster struc-
ture. Initially, the correlation dimension is introduced in chaos the-
ory [3-6]. As a commonly used fractal dimension, it has been
widely used in other fields, such as financial time series anal-
ysis [7-9] and machine learning [10,11]. In financial time series
analysis, the correlation dimension is used to analyze the chaos of
financial time series [7-9], and in machine learning, it is used to
calculate the intrinsic dimension of the data set [10,11].

On the other hand, in recent years, the financial threshold net-
works have been extensively studied [12-20]. For example, for a
correlation coefficient matrix, a non-diagonal element larger than
a certain threshold is converted to 1, otherwise it is converted
to 0 and the diagonal element is converted to 0, so that for a
threshold, a 0-1 matrix is constructed and is used as the adja-
cency matrix of the threshold network. This approach has been
used in the study of markets in different countries [12-14]. In
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previous studies, different structures, such as degree distributions
[12-20] and cliques [12,18,20], are studied. In the threshold
method, the method of converting the correlation coefficient ma-
trix or distance matrix into an adjacency matrix is similar to the
method in the correlation dimension.

In particular, recently, the author has used the correlation di-
mension to analyze the dimensionality of the stock set [21]. In [21],
the intuitive meaning of the dimension is the change rate of the
average degree of the threshold network. Studies have shown that
large fluctuations in the market (such as during a financial crisis)
correspond to a significant reduction in dimensions [21].

In previous studies, different clustering methods have been
used to detect the cluster structure of the correlation matrix, such
as the hierarchical clustering method based on the minimum span-
ning tree used in [22], and in [23], the author applied k — means
and FCM and SOM algorithms in the financial market. In [24],
the authors reviewed some time series-based clustering algorithms
used in financial markets. These clustering methods have been
used in portfolios or analysis of fund styles and so on [22-29]. Due
to the characteristics of the financial time series, the cluster struc-
ture in the correlation coefficient matrix is not static, as shown
in [24]. Thus, the dynamics of the cluster structure needs to be
studied.

In previous studies, factor models are often used to characterize
financial data [30-32]. In the literature [32], based on random ma-
trix theory, the correlation coefficient matrices of the factor models
are studied. In our study, we will use the factor model to generate
a correlation coefficient matrix with a clear cluster structure. Then,
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in order to study the dynamics of the cluster structure, we will use
the correlation dimension as a detection tool. We first construct a
toy model based on the model proposed in [32] and generate some
correlation coefficient matrices with some clear clusters. Then we
can study the relationship between cluster structure and dimen-
sion. Secondly, we will use clustering algorithm to detect clusters
in the correlation coefficient matrix in real market data. The results
are then compared to model-based results. In this paper, since the
method in [21] is used to calculate the correlation dimension, we
already know that there is a relationship between the dimension
and the average degree of the threshold network. In order to make
different methods can be combined, here, a time series clustering
algorithm based on the threshold network is used [33]. In this al-
gorithm, the threshold network is constructed, and the community
detection algorithm is used to detect the clusters in the network,
which are corresponding to clusters in the original matrix [33].
At present, a large number of community detection algorithm has
been proposed [34-36], this paper will use the classic algorithm
proposed by Newman [37].

2. Data and methods
2.1. Data

This paper will use the data generated by the model and the
real market data. We use the closing price data for the S&P 100 in-
dex constituents from 2005/1/3 to 2015/4/24. Missing stocks were
removed, with a total of 93 stocks selected. The model we use will
be described in Section 2.2, with specific data details described in
the Results section.

Here, we assume that there are N time series, each time series
corresponds to a node, in this way, the stock i (or a simulated time
series) corresponds to node v;, so that an N*N matrix corresponds
to a network W = (V, T), where V = {v;,i = 1...N} is the node set,
T is the adjacency matrix.

In our study, we will use the correlation coefficient matrix of
stock returns, the correlation coefficient between stocks i and j
as shown in Eq. (1), where R;(t) =log(P,(t + 1)) — log(P;(t)), and
{P;(t)} is the price series of stock i. On the other hand, we need
to compute the correlation dimension, and the stock distance pro-
posed in [22] is used, as shown in Eq. (2).

i = (Ri(OR; (1)) — (Ri()) (R; (1))
Y (Ri(6)2 — (Ri(0))2) (R; (£)% — (R;(£))2))1/2

dij =[2% (1 - pij)]'? (2)

2.2. Toy model

(1)

Firstly, based on the model in [32], we give a toy model. The toy
model can generate a correlation matrix with clear cluster struc-
ture. In [32], a general model is constructed, as shown in Eq. (3).
In Eq. (3), there are N variables and K factors. The y(i, j)j # 0) is
the weight used to describe the effect of the j factor fi(j) on the
variable x.(i). The y(i, 0) is also a positive constant that describes
the random perturbation term. In the model, the relationship be-
tween the factor f(i) and fi(j) is < fi (D) fe (j) >= J;j. The €(i) is the
standard Gaussian noise term, and < & (i)€:(j) >= §;;. In addition,
the relationship between < fi(i) > and €.(i) is < f;(i)€:(j) >=0.

K
x () =Y yi.Nfi()+e@y0),i=1...N 3)
j=1

Next, based on Eq. (3), we present a simplified model, as shown
in Eq. (4). In this model, the number of factors in each time se-
ries is 1, but different clusters correspond to different factors, and
there is correlation between these factors. In the following, we

describe the steps of the model in detail. We assume that there
are m clusters and all the factors are standard normal random
variables. So that m factors need to be generated, and the cor-
relation coefficient matrix between these m factors is denoted as
G =[G, j)], where the G(i, j) is the correlation coefficient between
ft" and f[]. In the model, the number of variables in different clus-
ters can be different. Assuming that the number of variables in
cluster q is ng, the total number of nodes generated by the model
is N= 2?1:1 n;. We generate the random numbers {y4(i)} as the

coefficient of the factor f{, and {y9(i)} satisfies the uniform distri-
bution on [u{, uj]. In our model, /(i) is also a Gaussian random
term with zero-mean, but the standard deviation o9 cannot be 1.
The values of o7 for different clusters may differ from each other.
In addition, in the model, < €' (i), ff2 >=0, and when q; # ¢,
<€), e (j) >=0.

Thus, in the model here, the following parameters need to be
set, respectively, the correlation coefficient matrix G, the num-
ber set Nyjyster = {g.q = 1...m}, a set of intervals I = {[u{,uj].q =
1...m}, and a set of standard deviation values S = {c9,q=1...m}.

() =yi)fl+€l),gq=1...mi=1...n4 (4)

First, we need to generate the time series corresponding to
these m factors. Here, we use Cholesky decomposition, as shown
in the literature [38]. The main steps to generate model data are
as follows.

Step.1 Based on the correlation coefficient matrix G and
Cholesky decomposition, G can be decomposed into G = GG,
where t means matrix transpose.

Step.2 By the following Eq. (5), m time series are generated,
where E¢ is the m x 1 matrix, and the elements of Ec are unre-
lated standard normal random variables. The element ®(q, 1) of
the random vector @ corresponds to the factor ftq. We can verify
E[®®'] = G1E[EEL]G, = G1G, =G.

® = GiEe (5)

Step.3 Based on the parameters in sets Ny I and S, we gen-
erate N time series using Eq. (4) and {ff,q=1...m}.

Formally, the model we use here is similar to the one-factor
model, but here, the different clusters correspond to different fac-
tors, and there is a correlation between the different factors. In ad-
dition, we use the random perturbation term to control the clarity
of the cluster. This allows us to study the relationship between the
clarity of the cluster structure and the correlation dimension. In
contrast to the proposed model in [32], there is a correlation be-
tween the factors of the proposed toy model, and the number of
factors is the number of clusters.

2.3. Algorithm for detecting clusters

In this paper, we use the method in [33] to detect clusters in
the correlation coefficient matrix. The core idea of this method is
to detect the communities in the threshold network by the com-
munity detection algorithm, and then the communities correspond
to the clusters. Note that in this method, the variable x.(i) is as-
signed to the node v; in the threshold network, assuming a total
of N time series, then a node set V = {v;,i=1...N} is given. In
the original paper [33], the threshold network thus generated is
called e-nearest neighbor network (¢ — NN). The main steps of the
method are as follows.

Step.1 A threshold r is set and the distance matrix D is con-
verted to a threshold network W; = {V, D;}, where D:(i, j) =1, if
D(i, j) < r, otherwise D, (i, j) = 0. In addition, in order to avoid the
existence of self-loop in the network, we define D(i,i) = 0.
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