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a b s t r a c t 

The correlation dimensions in the financial market are calculated and used as a measure to study the 

cluster structure in the correlation coefficient matrix. First, based on the existing model, we present a 

toy model. Using the model-generated data, we find that the clearer cluster structure corresponds to a 

smaller dimension. It implies that the correlation dimension can be used as a measure of the cluster 

structure in the correlation coefficient matrix. Finally, we use the algorithm to compute the clusters in 

the real market and verify the previous empirical evidence. The results show that the cluster structure in 

the financial correlation coefficient matrix may change with time. The correlation dimension is smaller 

after the financial crisis, indicating that the cluster structure is clearer after the financial crisis. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years, the clustering problem of time series has been 

widely studied and used in financial time series analysis. In the 

past studies, some clustering algorithms for time series have been 

proposed [1,2] . 

In this paper, we study the dynamics of the cluster structure 

in the financial correlation coefficients matrices. In our study, the 

correlation dimension is used to detect the change of cluster struc- 

ture. Initially, the correlation dimension is introduced in chaos the- 

ory [3–6] . As a commonly used fractal dimension, it has been 

widely used in other fields, such as financial time series anal- 

ysis [7–9] and machine learning [10,11] . In financial time series 

analysis, the correlation dimension is used to analyze the chaos of 

financial time series [7–9] , and in machine learning, it is used to 

calculate the intrinsic dimension of the data set [10,11] . 

On the other hand, in recent years, the financial threshold net- 

works have been extensively studied [12–20] . For example, for a 

correlation coefficient matrix, a non-diagonal element larger than 

a certain threshold is converted to 1, otherwise it is converted 

to 0 and the diagonal element is converted to 0, so that for a 

threshold, a 0–1 matrix is constructed and is used as the adja- 

cency matrix of the threshold network. This approach has been 

used in the study of markets in different countries [12–14] . In 
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previous studies, different structures, such as degree distributions 

[12–20] and cliques [12,18,20] , are studied. In the threshold 

method, the method of converting the correlation coefficient ma- 

trix or distance matrix into an adjacency matrix is similar to the 

method in the correlation dimension. 

In particular, recently, the author has used the correlation di- 

mension to analyze the dimensionality of the stock set [21] . In [21] , 

the intuitive meaning of the dimension is the change rate of the 

average degree of the threshold network. Studies have shown that 

large fluctuations in the market (such as during a financial crisis) 

correspond to a significant reduction in dimensions [21] . 

In previous studies, different clustering methods have been 

used to detect the cluster structure of the correlation matrix, such 

as the hierarchical clustering method based on the minimum span- 

ning tree used in [22] , and in [23] , the author applied k − means 

and FCM and SOM algorithms in the financial market. In [24] , 

the authors reviewed some time series-based clustering algorithms 

used in financial markets. These clustering methods have been 

used in portfolios or analysis of fund styles and so on [22–29] . Due 

to the characteristics of the financial time series, the cluster struc- 

ture in the correlation coefficient matrix is not static, as shown 

in [24] . Thus, the dynamics of the cluster structure needs to be 

studied. 

In previous studies, factor models are often used to characterize 

financial data [30–32] . In the literature [32] , based on random ma- 

trix theory, the correlation coefficient matrices of the factor models 

are studied. In our study, we will use the factor model to generate 

a correlation coefficient matrix with a clear cluster structure. Then, 
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in order to study the dynamics of the cluster structure, we will use 

the correlation dimension as a detection tool. We first construct a 

toy model based on the model proposed in [32] and generate some 

correlation coefficient matrices with some clear clusters. Then we 

can study the relationship between cluster structure and dimen- 

sion. Secondly, we will use clustering algorithm to detect clusters 

in the correlation coefficient matrix in real market data. The results 

are then compared to model-based results. In this paper, since the 

method in [21] is used to calculate the correlation dimension, we 

already know that there is a relationship between the dimension 

and the average degree of the threshold network. In order to make 

different methods can be combined, here, a time series clustering 

algorithm based on the threshold network is used [33] . In this al- 

gorithm, the threshold network is constructed, and the community 

detection algorithm is used to detect the clusters in the network, 

which are corresponding to clusters in the original matrix [33] . 

At present, a large number of community detection algorithm has 

been proposed [34–36] , this paper will use the classic algorithm 

proposed by Newman [37] . 

2. Data and methods 

2.1. Data 

This paper will use the data generated by the model and the 

real market data. We use the closing price data for the S&P 100 in- 

dex constituents from 2005/1/3 to 2015/4/24. Missing stocks were 

removed, with a total of 93 stocks selected. The model we use will 

be described in Section 2.2 , with specific data details described in 

the Results section. 

Here, we assume that there are N time series, each time series 

corresponds to a node, in this way, the stock i (or a simulated time 

series) corresponds to node v i , so that an N 

∗N matrix corresponds 

to a network W = (V, T ) , where V = { v i , i = 1 . . . N} is the node set, 

T is the adjacency matrix. 

In our study, we will use the correlation coefficient matrix of 

stock returns, the correlation coefficient between stocks i and j 

as shown in Eq. (1) , where R i (t) = log(P i (t + 1)) − log(P i (t)) , and 

{ P i ( t )} is the price series of stock i . On the other hand, we need 

to compute the correlation dimension, and the stock distance pro- 

posed in [22] is used, as shown in Eq. (2) . 

ρi j = 

〈 R i (t) R j (t) 〉 − 〈 R i (t) 〉〈 R j (t) 〉 
(〈 R i (t) 2 − 〈 R i (t) 〉 2 〉〈 R j (t) 2 − 〈 R j (t) 〉 2 〉 ) 1 / 2 (1) 

d i j = [2 ∗ (1 − ρi j )] 1 / 2 (2) 

2.2. Toy model 

Firstly, based on the model in [32] , we give a toy model. The toy 

model can generate a correlation matrix with clear cluster struc- 

ture. In [32] , a general model is constructed, as shown in Eq. (3) . 

In Eq. (3) , there are N variables and K factors. The γ ( i, j )( j � = 0) is 

the weight used to describe the effect of the j factor f t ( j ) on the 

variable x t ( i ). The γ ( i , 0) is also a positive constant that describes 

the random perturbation term. In the model, the relationship be- 

tween the factor f t ( i ) and f t ( j ) is < f t (i ) f t ( j) > = δi j . The εt ( i ) is the 

standard Gaussian noise term, and < εt (i ) εt ( j) > = δi j . In addition, 

the relationship between < f t ( i ) > and εt ( i ) is < f t (i ) εt ( j) > = 0 . 

x t (i ) = 

K ∑ 

j=1 

γ (i, j ) f t ( j ) + εt (i ) γ (i, 0) , i = 1 . . . N (3) 

Next, based on Eq. (3) , we present a simplified model, as shown 

in Eq. (4) . In this model, the number of factors in each time se- 

ries is 1, but different clusters correspond to different factors, and 

there is correlation between these factors. In the following, we 

describe the steps of the model in detail. We assume that there 

are m clusters and all the factors are standard normal random 

variables. So that m factors need to be generated, and the cor- 

relation coefficient matrix between these m factors is denoted as 

G = [ G (i, j)] , where the G ( i, j ) is the correlation coefficient between 

f i t and f 
j 

t . In the model, the number of variables in different clus- 

ters can be different. Assuming that the number of variables in 

cluster q is n q , the total number of nodes generated by the model 

is N = 

∑ m 

j=1 n j . We generate the random numbers { γ q ( i )} as the 

coefficient of the factor f 
q 
t , and { γ q ( i )} satisfies the uniform distri- 

bution on [ u 
q 
1 
, u 

q 
2 
] . In our model, εq 

t (i ) is also a Gaussian random 

term with zero-mean, but the standard deviation σ q cannot be 1. 

The values of σ q for different clusters may differ from each other. 

In addition, in the model, < ε
q 1 
t (i ) , f 

q 2 
t > = 0 , and when q 1 � = q 2 , 

< ε
q 1 
t (i ) , ε

q 2 
t ( j) > = 0 . 

Thus, in the model here, the following parameters need to be 

set, respectively, the correlation coefficient matrix G , the num- 

ber set N cluster = { n q , q = 1 . . . m } , a set of intervals I = { [ u q 
1 
, u 

q 
2 
] , q = 

1 . . . m } , and a set of standard deviation values S = { σ q , q = 1 . . . m } . 

x q t (i ) = γ q (i ) f q t + εq 
t (i ) , q = 1 . . . m, i = 1 . . . n q (4) 

First, we need to generate the time series corresponding to 

these m factors. Here, we use Cholesky decomposition, as shown 

in the literature [38] . The main steps to generate model data are 

as follows. 

Step.1 Based on the correlation coefficient matrix G and 

Cholesky decomposition, G can be decomposed into G = G 1 G 

t 
1 
, 

where t means matrix transpose. 

Step.2 By the following Eq. (5) , m time series are generated, 

where E ε is the m × 1 matrix, and the elements of E ε are unre- 

lated standard normal random variables. The element �( q , 1) of 

the random vector � corresponds to the factor f 
q 
t . We can verify 

E[��t ] = G 1 E[ E εE t ε ] G 

t 
1 

= G 1 G 

t 
1 

= G . 

� = G 1 E ε (5) 

Step.3 Based on the parameters in sets N cluster , I and S , we gen- 

erate N time series using Eq. (4) and { f q t , q = 1 . . . m } . 
Formally, the model we use here is similar to the one-factor 

model, but here, the different clusters correspond to different fac- 

tors, and there is a correlation between the different factors. In ad- 

dition, we use the random perturbation term to control the clarity 

of the cluster. This allows us to study the relationship between the 

clarity of the cluster structure and the correlation dimension. In 

contrast to the proposed model in [32] , there is a correlation be- 

tween the factors of the proposed toy model, and the number of 

factors is the number of clusters. 

2.3. Algorithm for detecting clusters 

In this paper, we use the method in [33] to detect clusters in 

the correlation coefficient matrix. The core idea of this method is 

to detect the communities in the threshold network by the com- 

munity detection algorithm, and then the communities correspond 

to the clusters. Note that in this method, the variable x t ( i ) is as- 

signed to the node v i in the threshold network, assuming a total 

of N time series, then a node set V = { v i , i = 1 . . . N} is given. In 

the original paper [33] , the threshold network thus generated is 

called ε-nearest neighbor network ( ε − N N ). The main steps of the 

method are as follows. 

Step.1 A threshold r is set and the distance matrix D is con- 

verted to a threshold network W r = { V, D r } , where D r (i, j) = 1 , if 

D ( i, j ) ≤ r , otherwise D r (i, j) = 0 . In addition, in order to avoid the 

existence of self-loop in the network, we define D (i, i ) = 0 . 
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