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a b s t r a c t 

A main problem associated with the synchronization of two chaotic systems is that the time in 

which complete synchronization will occur is not specified. Synchronization time is either infinitely 

large or is finite but only its upper bound is known and this bound depends on the systems’ ini- 

tial conditions. In this paper we propose a method for synchronizing of two chaotic systems pre- 

cisely at a time which we want. To this end, time-varying switching surfaces sliding mode con- 

trol is used and the control law based on Lyapunov stability theorem is derived which is able 

to synchronize two fractional-order chaotic systems precisely at a pre specified time without con- 

cerning about their initial conditions. Moreover, by eliminating the reaching phase in the proposed 

synchronization scheme, robustness against existence of uncertainties and exogenous disturbances is 

obtained. Because of the existence of fractional integral of the sign function instead of the sign 

function in the control equation, the necessity for infinitely fast switching be obviated in this method. 

To show the effectiveness of the proposed method the illustrative examples under different situations are 

provided and the simulation results are reported. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fractional-order integral and derivative are mathematical no- 

tions that their origin are traced back to the end of 17th century. 

Owing to its application to physics and engineering, recently frac- 

tional calculus has attracted increasing attention. 

Chaotic systems are nonlinear deterministic systems that dis- 

play complex and noise-like behavior. These systems are extremely 

sensitive in respect to initial conditions. Synchronization of chaos 

has been widely investigated in many fields, such as physics, 

chemistry, secure communication, power electronic, biological sys- 

tems [1] . Chaotic behaviors are shown in many fractional-order 

systems such as Chua [2] , Chen [3–5] , and Rossler [6] , Lorenz [7] , 

Liu [8,9] , Lu [10] and Arneodo systems [11] .Various control meth- 

ods have been utilized for synchronizing fractional-order chaotic 

systems, such as: active control method [12–16] observer-based 

synchronization [17,18] , adaptive control [19,20] and sliding mode 

control [21–24] . In all that works, due to the existence of the 

reaching phase, the synchronization techniques are not completely 

robust and infinitely fast switching are necessary for keeping the 
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systems trajectories on the sliding surfaces. In [25-27] the first 

problem has been resolved by adopting a reaching law. Gao and 

Liao in [28] solved this problem by eliminating the reaching phase. 

The need for infinitely fast switching has been also obviated in 

[29-31] . 

On the other hand, in all above mentioned papers, the syn- 

chronization time either is infinitely large (asymptotically stability 

proof of error dynamics have been provided) or is finite but only 

an upper bound for it has been introduced, which this bound de- 

pends on the difference between masters and slaves initial condi- 

tions. The more difference in initial conditions, the more time to 

synchronize chaotic systems. 

Motivated by the above discussion, the main contribution of 

this paper is to synchronize two fractional chaotic systems just at 

a time when has been set in advance. To achieve this purpose, we 

have proposed a sliding mode controller with time-varying switch- 

ing surfaces. For the first time, we have introduced a control law 

that is able to synchronize two fractional chaotic systems precisely 

at any time when we want without worrying about how much the 

two chaotic systems are far from each other at initial time. The 

control law is derived based on Lyapunov stability technique. Fur- 

thermore, the synchronization is made completely robust to uncer- 

tainty and disturbances by eliminating the reaching phase. Since 

the fractional integral of the sign function instead of the sign func- 
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tion is used in control equation, the need for infinitely fast switch- 

ing is also obviated. 

2. Preliminaries 

In this section, some definitions, and lemmas which are neces- 

sary for obtaining a synchronizing controller has been presented. 

Definition 1. [32] : Assume Re α > 0 and assume f be piecewise 

continuous on (0, ∞ ) and integrable on any finite subinterval [0, 

∞ ). Then for t > 0 the equality 

D 

−α
t f ( t ) = 

1 

�( α) 

∫ t 

0 
( t − τ ) 

α−1 f ( τ ) dτ (1) 

is called the Riemann-Liouville α order fractional integral of f . 

For simplicity, the term ‘fractional integral’ is used instead of 

Riemann-Liouville fractional-order integral. According to definition 

1 , the fractional integral of t μ is [1] : 

D 

−α
t t μ = I αt t 

μ = 

�( μ + 1 ) 

�( α + μ + 1 ) 
t μ+ α, 

α > 0 , t > 0 , μ > −1 (2) 

Definition 2. [33] : The Riemann-Liouville (RL) fractional deriva- 

tives of the order α > 0, n − 1 < α < n , n ∈ N , are defined as: 

RL 
0 D 

α
t f ( t ) = 

d n 

d t n 

(
I n −α
t f ( t ) 

)
= 

1 

�( n − α) 

d n 

d t n 

∫ t 

0 

f ( τ ) 

( t − τ ) 
α−n +1 

dτ

(3) 

Definition 3. [32] : The Caputo (C) fractional derivative of a func- 

tion of the order α is: 

C 
0 D 

α
t f ( t ) = 

d n 

d t n 

(
I n −α
t f ( t ) 

)
= 

1 

�( n − α) 

∫ t 

0 

f ( n ) ( τ ) 

( t − τ ) 
α−n +1 

dτ, 

n − 1 ≤ α < n (4) 

According to the Definition 3 , the C fractional derivative of the 

function ( t ) β is equal to: 

C 
0 D 

α
t t 

β = 

�( β + 1 ) 

�( β − α + 1 ) 
t β−α, 

t > 0 , β > −1 (5) 

The RL and C fractional derivatives of the constant function 

f (t) = μ are respectively as follows: 

RL 
0 D 

α
t μ = 

μ

�( 1 − α) 
t −α, 

C 
0 D 

α
t μ = 0 , 

t > 0 (6) 

Definition 4. [34] : The incomplete Beta Function, which is a gen- 

eralization of the Beta function, is defined as follows: 

B x ( p, q ) = 

∫ x 

0 

u 

p−1 ( 1 − u ) 
q −1 du , Re ( p ) > 0 , 

Re ( q ) > 0 , 0 ≤ x ≤ 1 (7) 

Lemma 1. [35] : If f ( t ) ∈ C m [0, ∞ ) and 0 < α < 1 ∈ Z + , then 

RL 
a D 

α
t 

RL 
a D 

−α
t f ( t ) = 

C 
a D 

α
t 

RL 
a D 

−α
t f ( t ) = f ( t ) (8) 

Lemma 2. [36] : The RL fractional derivative operators commute, 

i.e. 

RL 
a D 

α
t 

(
RL 
a D 

β
t f ( t ) 

)
= 

RL 
a D 

β
t 

(
RL 
a D 

α
t f ( t ) 

)
= 

RL 
a D 

α+ β
t f ( t ) (9) 

only if the following conditions are satisfied: 

f ( j ) ( a ) = 0 , j = 0 , 1 , 2 , . . . , r − 1 (10) 

where m − 1 < α < m , n − 1 < β < n and r = max ( n, m ) . 

Lemma 3. [35] : If f ( t ) ∈ C 1 [0, T ] for some T > 0, then 

C 
0 D 

α
t 

(
C 
0 D 

β
t f ( t ) 

)
= 

C 
0 D 

β
t 

(
C 
0 D 

α
t f ( t ) 

)
= 

C 
0 D 

α+ β
t f ( t ) , t ∈ [ 0 , T ] (11) 

where α, β ∈ R + and α + β ≤ 1 . 

Lemma 4. [37] : If x i ∈ R for i = 1 , . . . , n and p ∈ (0, 1], then the 

following inequality holds: 

( | x 1 | + | x 2 | + · · · + | x n | ) p ≤ | x 1 | p + | x 2 | p + · · · + | x n | p (12) 

3. Problem statement 

Considering that master and slave systems are modeled as ( 13 ) 

and ( 14 ) respectively: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

D 

αy 1 ( t ) = g 1 ( Y ) + δG 1 ( Y, t ) + d m 

1 ( t ) 
D 

αy 2 ( t ) = g 2 ( Y ) + δG 2 ( Y, t ) + d m 

2 ( t ) 
. . . 

D 

αy n ( t ) = g n ( Y ) + δG n ( Y, t ) + d m 

n ( t ) 

(13) 

where α ∈ (0, 1) is the order of fractional derivatives, Y = 

[ y 1 · · · y n ] ∈ R n is the state vector of the master system, 

g i : R 
n → R for i = 1 , . . . , n are given nonlinear functions of Y, δG i ( Y, 

t ) and d m 

i 
(t) for i = 1 , . . . , n are the master system’s uncertainty 

and external disturbances respectively, and ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

D 

αx 1 ( t ) = f 1 ( X ) + δF 1 ( X, t ) + d s 1 ( t ) + u 1 ( X, Y, t ) 
D 

αx 2 ( t ) = f 2 ( X ) + δF 2 ( X, t ) + d s 2 ( t ) + u 2 ( X, Y, t ) 
. . . 

D 

αx n ( t ) = f n ( X ) + δF n ( X, t ) + d s n ( t ) + u n ( X, Y, t ) 

(14) 

where α ∈ (0, 1) is the order of fractional derivatives, X = 

[ x 1 · · · x n ] ∈ R n is the state vector of slave system, f i : R 
n → 

R for i = 1 , . . . , n are given nonlinear functions of X and t, δF i ( Y, t ) 

and d s 
i 
(t) for i = 1 , . . . , n are the slave system’s uncertainty and ex- 

ternal disturbances and finally u i for i = 1 , . . . , n are control signals. 

A large class of fractional chaotic systems can be utilized as 

master and slave systems in the form of ( 13 ) and ( 14 ), such as 

Rossler, Chen, Lu, Liu, Arneodo, Lorenz. 

Synchronization error is defined as follows: 

e i ( t ) = x i ( t ) − y i ( t ) , i = 1 , . . . , n (15) 

Taking α order fractional differentiation from both sides of ( 15 ) 

yields that 

D 

αe i ( t ) = D 

αx i ( t ) − D 

αy i ( t ) , i = 1 , . . . , n (16) 

Now by replacing ( 13 ) and ( 14 ) into ( 16 ), fractional differential 

equations that describe the dynamics of the synchronization error 

are obtained as ( 17 ): ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

D 

αe 1 ( t ) = f 1 ( X ) − g 1 ( Y ) + δF 1 ( X, t ) − δG 1 ( Y, t ) + d s 1 ( t ) 
−d m 

1 ( t ) + u 1 ( X, Y, t ) 
D 

αe 2 ( t ) = f 2 ( X ) − g 2 ( Y ) + δF 2 ( X, t ) − δG 2 ( Y, t ) + d s 2 ( t ) 
−d m 

2 ( t ) + u 2 ( X, Y, t ) 
. . . 

D 

αe n ( t ) = f n ( X ) − g n ( Y ) + δF n ( X, t ) − δG n ( Y, t ) + d s n ( t ) 
−d m 

n ( t ) + u n ( X, Y, t ) 

(17) 

Assumption 1. It is assumed that uncertainties and external dis- 

turbances are bounded and differentiable in terms of their argu- 

ments and there exist non negative constants F u 
i 

, G 

u 
i 
, D 

m 

i 
and D 

s 
i 

for i = 1 , . . . , n such that satisfy the following inequalities: ∣∣C 
0 D 

1 −α
t ( δF i (X, t) ) 

∣∣ ≤ F u 
i 

, F u 
i 

≥ 0 , i = 1 , . . . , n ∣∣C 
0 D 

1 −α
t ( δG i (X, t) ) 

∣∣ ≤ G 

u 
i 
, G 

u 
i 

≥ 0 , i = 1 , . . . , n ∣∣C 
0 D 

1 −α
t 

(
d s 

i 
(t) 

)∣∣ ≤ D 

s 
i 
, D 

s 
i 
≥ 0 , i = 1 , . . . , n ∣∣C 

0 D 

1 −α
t 

(
d m 

i 
(t) 

)∣∣ ≤ D 

m 

i 
, D 

m 

i 
≥ 0 , i = 1 , . . . , n 

(18) 
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