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a b s t r a c t 

The subharmonic bifurcations and chaotic motions of the nonlinear viscoelastic plates subjected to sub- 

sonic flow and external loads are studied by means of Melnikov method. The critical conditions for the 

occurrence of chaotic motions are obtained. The chaotic features on the system parameters are discussed 

in detail. The conditions for subharmonic bifurcations are also obtained. For the system with no structural 

damping, chaotic motions can occur through infinite subharmonic bifurcations of odd orders. Further- 

more, we confirm our theoretical predictions by numerical simulations. The theoretical results obtained 

here can help us to eliminate or suppress large nonlinear vibrations and chaotic motions of the nonlinear 

viscoelastic plates. Based on Melnikov method, complex dynamical behaviors of the nonlinear viscoelastic 

plates can be controlled by modifying the system parameters. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Composite plates are widely used in many engineering fields 

such as automobiles, aircrafts, robot arms and submarines. Con- 

sequently these engineering applications have attracted the atten- 

tion of many researchers to investigate and study the nonlinear 

vibrations and responses of plates. Feng and Sethna [1] investi- 

gated global bifurcations in the motion of parametrically excited, 

damped thin plates and obtained explicit conditions under which 

Silnikov homoclinic orbits and chaos can occur. In [2] , the method 

of multiple scales in conjunction with the Galerkin method was 

used to analyze the nonlinear forced and damped response of a 

rectangular orthotropic plate subjected to a uniformly distributed 

harmonic transverse loading. Nonlinear flexural vibrations of a 

rectangular plate with uniform stretching were studied by Chang 

et al. [3] for the case when it was harmonically excited with forces 

acting normal to the midplane of the plate. It was shown that, de- 

pending on the spatial distribution of the external forces, the plate 

can undergo harmonic motions either in one of the two individual 

modes or in a mixed-mode. Later, Anlas and Elbeyli [4] studied the 
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nonlinear response of rectangular and square metallic plates sub- 

ject to transverse harmonic excitations. Frequency response curves 

were presented for both square and rectangular plates for pri- 

mary resonance of either mode in the presence of a one-to-one 

internal resonance. In addition, the frequency responses of the 

nonlinear viscoelastic plates subjected to the subsonic fluid flow 

and external loads were studied by Younesian and Norouzi [5] for 

different resonance conditions including non-resonance, primary 

resonance, super-harmonic resonance and sub-harmonic resonance 

circumstances. The method of multiple scales was utilized to solve 

the governing equations and the critical speed of the flow in which 

the plate can show unstable behavior was obtained. Touze et al. 

[6] applied the von Karman theory and the method of multiple 

scales to examine the forced asymmetric nonlinear vibrations of 

circular plates with a free edge. 

The nonlinear vibration of an isotropic cantilever plate with vis- 

coelastic laminate was investigated by Bakhtiari-Nejad and Nazari 

[7] . Based on Reddy’s third-order shear deformation plate theory, 

Hao et al. [8] investigated the bifurcation and chaotic response of 

a cantilever functionally graded materials rectangular plate under a 

combined action of a transverse excitation and temperature field. 

In addition, Ye et al. [9] analyzed the local and global nonlinear 

dynamics of a parametrically excited simply supported rectangu- 

lar symmetric cross-ply laminated composite thin plate using the 

Galerkin approach and the multiple scales method. Applying the 

extended Melnikov method in the resonant case, Yao and Zhang 

[10] investigated the multi-pulse global bifurcations and chaotic 
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Fig. 1. Schematic representation of the plate subjected to subsonic flow and external excitation. 

dynamics of the high-dimension nonlinear system for a laminated 

composite piezoelectric rectangular plate. The necessary conditions 

for the existence of the Shilnikov type multi-pulse chaotic dynam- 

ics of the laminated composite piezoelectric rectangular plate were 

analytically obtained. Recently, the nonlinear responses and chaotic 

motions of plates have been considered by Zhang et al. in a series 

of papers [11–15] . 

The nonlinear dynamics of plates in subsonic flow have also 

been extensively studied in the past years. Applying the Melnikov 

method, Li et al. [16] studied the chaotic behaviors of a two- 

dimensional thin panel subjected to subsonic flow and external 

excitation and obtained the critical parameters for chaos. Based 

on the potential theory of incompressible flow and the energy 

method, a two-dimensional simply supported thin panel subjected 

to external forcing and uniform incompressible subsonic flow was 

theoretically modeled and the rich dynamical behaviors were pre- 

sented by Li et al. [17] . The vibrations of the plates interacting 

with inviscid, incompressible, potential gas flow were analyzed by 

Avramov et al. [18] . Yao and Li [19] investigated the bifurcation and 

chaotic motion of a two-dimensional composite laminated plate 

with geometric nonlinearity subjected to incompressible subsonic 

flow and transverse harmonic excitation. Li and Yang [20] studied 

the non-linear dynamical behavior of a cantilevered plate with mo- 

tion constraints in subsonic flow. Employing the Galerkin method, 

Li et al. [21] also studied the stabilities and bifurcations of a can- 

tilevered plate with nonlinear motion constraints in an axial sub- 

sonic flow. 

This paper focuses on research on subharmonic bifurcations 

and chaotic motions of the nonlinear viscoelastic plates subjected 

to subsonic flow and external loads. According to the governing 

equation derived by Younesian and Norouzi [5] , the critical con- 

ditions for the occurrence of chaotic motions are obtained by Mel- 

nikov method. The chaotic features on the system parameters are 

discussed in detail. The subharmonic Melnikov functions are also 

computed for the periodic orbits, we obtain that the system can 

be chaotically excited through infinite subharmonic bifurcations of 

odd orders. Using the fourth-order Runge–Kutta method, the phase 

portraits are numerically computed, which agree with the theoret- 

ical results. 

2. Formulation of the problem 

The system treated in this paper is shown in Fig. 1 [5] , 

which illustrates schematic representation of a simply supported 

plate that is subjected to a subsonic fluid flow and external ex- 

citation f (x, y, t) simultaneously. The length, width and thick- 

ness of the plate are, respectively, a, b and h . The dimen- 

sions of the plate and used coordinates have been demon- 

strated in Fig. 1 . Equation of motion of the plate can be 

derived and showed in the form [5] : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 
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(1) 

In this equation E, D , υ, c, ρ and w , are Young’s modulus, rigid- 

ity, Poisson’s ratio, viscous damping, mass density and trans- 

verse displacement of the plate respectively. We can define ∇ 

4 = 

( ∂ 
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∂ 2 
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) 2 and D = 

E h 3 

12(1 −υ2 ) 
. Also P and f represent external 

pressure distribution and other distributed forces separately, and 

one can add P to f to obtain total external distributed force. More- 

over, F is called the potential function and can be found as 
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in which N x and N y are the normal forces per unit length in the x 

and y directions respectively, and N xy is shear force per unit length. 

Based on the strain-displacement relations, one can write N x , N y 

and N xy as 
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where, u and v are in-plane displacements and are equal 

zero according to von-Kármán theory. Substituting Eq. (3) into 

Eq. (2) and then substituting the result into Eq. (1) , the equa- 

tion of motion of the plate can be obtained explicitly in the 

form [5] 
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