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We investigate structure formation in a one dimensional model of a matter-dominated universe using a 

quasi-Newtonian formulation. In addition to dissipation-free dark matter, dissipative luminous matter is 

introduced to examine the potential bias in the distributions. We use multifractal analysis techniques to 

identify scale-dependent structures, including clusters and voids. Both dark matter and luminous matter 

exhibit multifractal geometry over a finite range as the universe evolves in time. We present the results 

for the generalized dimensions computed on various scales for each matter distribution which clearly 

supports the bottom-up structure formation scenario. We compare and contrast the multifractal dimen- 

sions of two types of matter for the first time and show how dynamical considerations cause them to 

differ. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

According to galaxy surveys, the universe appears to have large- 

scale, hierarchical structures up to a certain scale [1,2] . Gravitation- 

ally bound collections of luminous galaxies are grouped into clus- 

ters and super clusters separated by large voids. As the cosmologi- 

cal principle states that the universe is homogeneous and isotropic 

at large scales, considerable effort has been made to study the 

scale at which the universe becomes homogenous [3] . In order to 

understand the structure of the universe and its associated scale, 

we need to understand the distribution of dark matter, as it com- 

prises the majority of the matter content of the universe [4] . While 

the exact nature of “dark matter” is still speculative, observations 

of the Bullet Cluster strongly imply that dissipation plays a key role 

in differentiating dark matter from luminous matter [5] . Since the 

visible galaxies are the only observational tracers, it is important 

to compare the evolution of both luminous (dissipative) and dark 

(conservative) matter in a single model where the degree of dissi- 

pation can be precisely controlled and investigate the possible bias 

against the distribution of dark matter. Although we recognize that, 

in reality, dark matter may behave in a way that is not accounted 

for in this model, such as macroscopic dissipation, here, following 

standard practice, we assume that dark matter particles are dis- 

sipationless for simplicity. We believe that this model sufficiently 

captures the essence of hierarchical clustering via weak interac- 

tions and demonstrates how the presence of dissipative baryonic 

matter affects the overall distributions. 
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Fractal analysis has proven to be a powerful tool in identifying 

scale-dependent structures as well as in quantifying their textures 

[6,7] . As fractal analysis does not require a priori knowledge of 

the mean density, it has been successfully applied in cosmology 

to find the homogeneity scale both in large scale galaxy surveys 

and simulations [8,9] . Unlike three-dimensional simulations, a 

one-dimensional model permits analytical solutions which allow 

us to maintain fractal fine structures. Therefore, with a one- 

dimensional model, we can study the non-linear dynamics of the 

expansion with confidence. In the past, one dimensional models 

have shown robust scaling ranges, evidence of fractal-like struc- 

tures [10,11] . Accordingly, it is of wide interest to examine how 

a one-dimensional model universe with two matter components 

evolves over time. In particular, to gain information about both 

high and low density regions of the matter distribution, we em- 

ployed mass-oriented methods which allow us to investigate the 

evolution of multifractal spectra D q , including the negative range 

of the index q where popular size-oriented methods are known to 

have difficulty in producing reliable estimates [12] . Moreover, to 

characterize the evolution of size-dependent dynamical sets, we 

applied the fixed- k method with various values of k . The use of 

different values of k allows us to study structures with different 

sizes. If extrapolated to three-dimensional cosmology, our results 

clearly demonstrate bottom-up formation, where the clusters 

with a well-defined fractal dimension spectrum become larger in 

time. They also indicate that two different multifractal spectra are 

required to characterize the clusters with the two types of matter. 

In addition, compared with the dense structures, the voids form 

more slowly but show no difference for dark matter and luminous 

matter in terms of their fractal dimensions. 
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The main purposes of this work are two-fold: First, we con- 

struct a model where we can investigate how the introduction 

of dissipative matter affects the hierarchical clustering process in 

a quantitative manner. Second, we demonstrate how both fixed- 

k and k -neighbor numerical methods can be applied to study the 

dynamical, scale-dependent fractal structures formed in the clus- 

tering process. 

2. One-dimensional model 

The one-dimensional model was first formulated by Rouet and 

Feix [13] . Other researchers also have worked on one dimensional 

models with different coefficients. For details, see the review pa- 

per by Miller et al. [10] as well as [14] and [11] for more recent 

work. In this work, we extend the model to include luminous mat- 

ter in addition to dark matter. To accomplish this we adopted a 

simple collision scheme such that luminous matter particles lose 

energy in interaction with each other. In contrast with dark matter, 

additional short range forces in luminous matter result in energy 

loss via radiation, turbulence, etc. Here we lump these effects into 

an effective inelastic collision between the “luminous” particles. In 

formulating a one-dimensional model, we embed a set of infinitely 

large, two-dimensional, parallel sheets of mass with a density m 

perpendicular to the configuration space. Since the fields gener- 

ated by the sheets of mass are independent of their position and 

are parallel to the configuration space, we can confine their mo- 

tions to an effectively one-dimensional space. Therefore, we rep- 

resent a sheet by a particle which moves along the configuration 

space. In order to reduce boundary effects, following typical cos- 

mological simulations [15] , we employ periodic boundary condi- 

tions which take into account the infinite number of replicas of 

the mass sheets contained in the original interval [ −L, L ) . While 

the potential from the infinite number of masses diverges, we can 

benefit from a technique called Ewald summation. Using this tech- 

nique, we can isolate the potential which gives rise to the motion 

of particles by subtracting the background potential [16] . In this 

way, it can be shown that the total field E ( χ ) from the number of 

particles N in the original interval [ −L, L ) is 

E(χ ) = 

[ 
N 

L 
(χ − χc ) + 

1 

2 

( N R (χ ) − N L (χ ) ) 

] 
(1) 

where χ c is the center of mass of the system and N R ( L ) is the 

number of particles to the right (left) of the position χ within the 

original interval [16] . Following standard practice, we set up a dy- 

namical equation using Newtonian mechanics with comoving coor- 

dinates. During the matter-dominated universe in which structure 

formation takes place, the universe expands roughly by a scale fac- 

tor a ( t ) ∝ ( t / t 0 ) 
2/3 [17] for some time unit t where the initial time t 0 

may be set to the epoch of recombination, i.e. the beginning of 

the matter-dominated universe. The comoving coordinate χ is in- 

troduced such that the apparent length is kept fixed and the mass 

density remains constant. The comoving coordinate is related to 

the original coordinate r by r = a (t) χ . Due to this transformation, 

we can rewrite the field equation in terms of the comoving coordi- 

nate. By introducing a logarithmic time scale T and an appropriate 

time unit, we obtain 

d 2 χ

dT 2 
+ 

1 √ 

2 

dχ

dT 
− χ = E(χ, T ) . (2) 

This is the signature equation of motion in the RF model, named 

after Rouet and Feix, and its formulation is fully discussed in their 

work [13] . With the “friction” coefficient being 1 √ 

2 
in the RF model, 

we can analytically obtain the crossing time between two particles 

by solving cubic equations. Thus we can write an event-driven al- 

gorithm and minimize the unknown effects often brought in by 

numerical approximations. In this work, we extend the previous 

model by introducing luminous matter. In the simulation, luminous 

matter and dark matter behave identically except at the cross- 

ings. When two luminous matter particles approach, they “collide”

and lose energy in interaction with each other. We set a velocity- 

dependent collision coefficient κ analogous to a restitution coeffi- 

cient. The velocity dependence is given by κ = exp 

(
−c| v 1 − v 2 | 3 / 5 

)
where v 1 and v 2 represent the velocities of two colliding particles. 

The coefficient c was chosen arbitrarily in the simulation so that 

the trajectories of luminous matter particles are substantially dif- 

ferent from dark matter particles without forcing them to collapse 

too fast. The luminous particles lose more energy when the veloc- 

ity difference between the two is large. Initially, the particles are 

placed near the equilibrium positions which are separated equally 

in the configuration space. 

3. Initial conditions 

The primordial potential fluctuation is chosen to replicate 

the scale-invariant Harrison-Zel’dovich spectrum [18] . In a three- 

dimensional universe, the spectral index n for the power spectrum 

is unity which roughly agrees with the estimate from observations 

[19] . In the one-dimensional case, the spectral index n needs to be 

three to insure that potential fluctuations are invariant of scale. We 

randomly assigned initial positions so that the fluctuations around 

the equilibrium positions follow these statistics. Based on observa- 

tional estimates, the dark matter to luminous matter ratio is fixed 

to 4:1 [4] . Accordingly one fifth of the total particles are selected 

using a random process and designated as luminous matter. The 

results presented in this work were performed with the total num- 

ber of particles N = 10 0 , 0 0 0 . For simplicity, we chose units such 

that the original interval length 2 L is equal to the number of par- 

ticles N . 

4. Simulations 

In Fig. 1 , we show how the distribution of matter in space 

evolves over time. For illustrative purposes, this simulation was 

performed with a smaller number of particles N = 300 . The ini- 

tial positions of the particles are shown at the bottom of the fig- 

ure and, by looking towards the top, we see that the particles coa- 

lesce to form clusters. Viewing online one can distinguish the non- 

dissipative dark matter from the dissipative luminous matter by 

color. In Fig. 2 , we extracted snapshots of the matter distribution 

at a few different times T in μ-space where the vertical axis rep- 

resents the velocities of the particles and the horizontal axis the 

positions. With N = 10 0 , 0 0 0 , the system undergoes a similar evo- 

lution but on a more massive scale. With N = 300 , we observe that 

the nearly homogenous initial distribution evolves into a single 

cluster towards the end of the simulation. At the core of the clus- 

ter, luminous matter appears to be concentrated with dark matter 

forming a halo around it. We can also see how the energy of the 

system evolves in Fig. 2 . Initially, potential energy (PE) dominates 

the system. As the total energy (TE) decreases due to the friction 

term in the equation of motion Eq. (2) , the particles begin to pick 

up kinetic energy (KE). While smaller clusters interact with each 

other and merge into a larger cluster, potential and kinetic energy 

exchange. The small, random fluctuations in total energy are due 

to the collisions between luminous particles. 

5. Fractal analysis 

By comparing the fractal dimension of the set with the dimen- 

sion of the embedding space we can estimate the degree of in- 

homogeneity and complexity. In order to study the formation of 

the clusters and voids separately, in this work we used the gener- 

alized fractal dimensions, for which the well-known box-counting 



Download	English	Version:

https://daneshyari.com/en/article/8254433

Download	Persian	Version:

https://daneshyari.com/article/8254433

Daneshyari.com

https://daneshyari.com/en/article/8254433
https://daneshyari.com/article/8254433
https://daneshyari.com/

