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a b s t r a c t 

The spatiotemporal dynamics of a space- and time-discrete predator–prey system is investigated in this 

research. The conditions for stable homogeneous stationary state of the system are derived via stability 

analysis. By using center manifold theorem and bifurcation theory, critical parameter values for flip bi- 

furcation, Hopf bifurcation and Turing bifurcation are determined, respectively. Based on the bifurcation 

analysis, pattern formation conditions are also provided. Numerical simulations are performed not only 

to illustrate the theoretical results, but also to exhibit new and complex dynamical behaviors, including 

period-doubling cascade, invariant circles, periodic windows, chaotic dynamics, and pattern formation. 

Maximum Lyapunov exponents are calculated to distinguish chaos from regular behaviors. In the routes 

from bifurcation to chaos, flip-Turing instability and Hopf-Turing instability emerge, capturing the forma- 

tion of diverse complex patterns, such as mosaic, circle, spiral, spatiotemporal chaotic patterns, and so on. 

The analysis and results in this research contribute to a new understanding on the relationship among 

bifurcation, chaos and pattern formation. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Predator–prey systems are a type of basic ecological system 

widely existing in nature. Since the pioneering work of Lotka 

and Volterra, the dynamical behaviors of predator–prey systems 

have aroused widespread interests of theoretical and experimental 

scientists [1–5] . With characteristics of nonlinear interactions and 

spatial heterogeneity, the predator–prey systems often exhibit 

spatiotemporal complexity [6,7] . Until now, the investigations 

on spatiotemporal complexity have formed a new research field, 

pattern dynamics, which is one of central topics in ecology [8–11] . 

As widely recognized, the pattern formation research fosters 

understanding on the dynamical complexity of predator–prey 

systems [12–15] . 

In order to theoretically investigate the spatiotemporal dy- 

namics of predator–prey systems, various types of dynamical 

models have been developed, including cellular automata, games 

of cyclic dominance, reaction-diffusion models, coupled map 

lattices (CMLs), and so on. Cellular automata have played an 

important role in the research of ecological spatiotemporal com- 

plexity [26,37] . Characterized by discrete time, discrete space and 

discrete variables, cellular automata can exhibit many complex 

nonlinear behaviors of predator–prey systems, including fractals, 
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attractors, ergodicity, regular patterns, spatiotemporal chaos, and 

so on [26,38,39] . Moreover, cellular automata show advantage 

in describing a few special nonlinear population dynamics, such 

as outbreak or sudden extinction of populations [40,41] . The 

effective reproduction on nonlinear and complex characteristics of 

ecological systems evokes wide application of cellular automata in 

ecology field. 

Recently, predator–prey systems with structured populations 

have been studied through games of cyclic dominance. Games of 

cyclic dominance not only play a prominent role in explaining the 

intriguing biodiversity in nature, but also are able to provide in- 

sights into Darwinian selection, as well as into structural complex- 

ity and prebiotic evolution [42,43] . It has been established that 

multiple species in a cyclic dominance can exhibit self-organizing 

behaviors in space [42,44] . As described in Perc et al. and Perc and 

Szolnoki, defensive alliances can emerge spontaneously on the spa- 

tial grid if the chain length of a predator–prey system is more than 

three [42,45] . Moreover, predator–prey interactions and spatiotem- 

poral self-organization can also emerge spontaneously in evolu- 

tionary settings relevant to public goods, as reported in Szolnoki 

and Perc and Szolnoki et al. [46,47] . In evolutionary games, the 

spontaneous emergence of cyclic dominance acts one of the main 

driving forces behind complex pattern formation, which, in turn, is 

responsible for many differences between evolutionary outcomes 

reported in well-mixed and structured populations [43] . 
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Reaction-diffusion models are the mostly widely used theoret- 

ical models for studying spatially extended predator–prey systems 

[8–10,12–15,19] . Via the Turing instability mechanism, reaction- 

diffusion models have contributed greatly to explaining and re- 

vealing the spatial pattern formations ranging from plant distri- 

butions to plankton aggregation [2,14–17] and [18] . Many complex 

predator–prey patterns have been demonstrated, such as patterns 

of spots, stripes, labyrinth, spirals, gaps, and so on [8,12,15] . So far, 

the development of reaction-diffusion predator–prey models in lit- 

erature mainly focuses on two aspects. First, many reaction func- 

tions are proposed to describe the dynamics of predator and prey. 

These reaction functions may incorporate particular growth func- 

tion, functional response or predator numerical response [19–21] . 

Second, dispersal of predator and prey populations is described by 

different diffusion types, such as self-diffusion, cross-diffusion [21] , 

and so on. 

When considering spatially and temporally discrete forms of 

reaction-diffusion models, a new type of predator–prey model can 

be developed, i.e., coupled map lattices (CMLs) [7,29,30,35,36] . 

CMLs are a type of discrete model and can be used to study 

the spatiotemporal dynamics of space- and time-discrete predator–

prey systems. In comparing with the continuous models, the CMLs 

show advantages in describing nonlinear characteristics and dy- 

namical complexity. First, the CMLs can exhibit complex nonlinear 

characteristics, including frozen chaos, defect turbulence, chaotic 

Brownian motion of defect, spatiotemporal intermittency, fully de- 

veloped spatiotemporal chaos and travelling wave [27,28] . Second, 

the CMLs may exhibit new dynamical behaviors, e.g., Turing in- 

stability and Turing patterns can occur in the discrete competitive 

Lotka-Volterra model rather than the continuous one [35] . More- 

over, the CMLs show capability of describing discontinuous proper- 

ties (e.g. patchy environment or fragmented habitat) of predator–

prey systems [7] . 

Compared with other discrete models (such as cellular au- 

tomata), the advantages of CMLs may reflect in the following 

aspects. First, the conditions for pattern formation can be theoret- 

ically determined and the effects of parameter variations on pat- 

tern formation can be quantitatively described [7] . Second, a CML 

itself describes a numerical algorithm, therefore, numerical simula- 

tions based on the CMLs often show high computational efficiency. 

Third, the application of CMLs may result to a better understanding 

and prediction of pattern formations [7,29,30] . Furthermore, the 

CMLs are very closely related to continuous spatiotemporal mod- 

els and hence a few achieved theoretical results and methods can 

be taken to analyze the CMLs [22–25] . 

Although lots of works have been done on predator–prey sys- 

tems, still few studies focus on applying the CMLs to explore the 

predator–prey dynamics. As described in previous research works, 

the CMLs further the understanding on the pattern formation 

of space- and time-discrete predator–prey systems [7,29,30,35,36] . 

However, these research works mainly investigate the case of pure 

Turing instability. An investigation on pattern formation related 

to various bifurcations is still seldom documented for the space- 

and time-discrete predator–prey systems. Therefore, the research 

on space- and time-discrete predator–prey systems so far still re- 

mains open. In this research, we will propose a new CML model 

and find new results for the spatiotemporal dynamics of predator–

prey system. Moreover, due to the similarity of research problems, 

the potential applicability of the proposed approach in this re- 

search can also extend to broader areas of population dynamics 

and evolution, such as spatiotemporal complexity of competitive 

systems [35] , physics of social systems [48] and statistical mechan- 

ics of evolutionary and coevolutionary games [49] . 

The research is organized as follows. Section 2 gives the de- 

velopment of the CML model and corresponding stability analysis. 

Section 3 analyzes the flip bifurcation, Hopf bifurcation and Turing 

bifurcation, determining the pattern formation conditions. Section 

4 provides numerical simulations to show the bifurcations and pat- 

tern formation, verifying and extending the theoretical results ob- 

tained in Section 3 . And finally, Section 5 presents the discussion 

and conclusion. 

2. Mathematical model and stability analysis 

2.1. Development of the CML model 

For developing the CML model, the reaction-diffusion mod- 

els are introduced firstly. Generally, the governing equations for 

a reaction-diffusion predator–prey model can be described by the 

following: 

∂U 

∂T 
= U f ( U ) − V g ( U, V ) + D 1 ∇ 

2 U, (1a) 

∂V 

∂T 
= V h ( U, V ) + D 2 ∇ 

2 V, (1b) 

where U and V represent the densities of prey and predator, T de- 

notes time; f ( U ) describes per capita growth rate of the prey; g ( U, 

V ) is a functional response for the predation relationship; h ( U, V ) 

is known as the predator numerical response, expressing per capita 

growth rate of predators; ∇ 

2 is the Laplace operator describing the 

spatial dispersal of populations, and D 1 and D 2 are the diffusion 

coefficients corresponding to U and V ; ∇ 

2 = ∂ 2 / ∂ x 2 + ∂ 2 / ∂ y 2 , in 

which x and y are spatial coordinates in two-dimensional space 

describing the position of U and V . 

In literature, a variety of functions for f ( U ), g ( U,V ) and h ( U,V ) 

have been formulated to investigate the pattern formation of 

predator–prey systems in various situations [12,14] . f ( U ) can be 

chosen to describe the prey growth in exponential or logistic form 

or under Alee effect. The functional response g ( U,V ) can be chosen 

among lots of types, including Holling types [20] , ratio-dependent 

type [21] , Beddington–DeAngelis type [19] , etc. Likewise, many 

possible choices can also be given for h ( U,V ). The diversity of these 

functions raises the complexity of pattern formation of predator–

prey systems. In this research, we focus on the following functions 

for f ( U ), g ( U,V ) and h ( U,V ) [12,15] : 

f ( U ) = r 1 

(
1 − U 

K 

− m 1 

U + b 1 

)
, (2a) 

g ( U, V ) ≡ g ( U ) = 

c 1 U 

U + K 1 

, (2b) 

h ( U, V ) = r 2 − c 2 V 

U + K 2 

, (2c) 

where r 1 is the intrinsic growth rate of the prey; K is the prey 

carrying capacity; m 1 /( U + b 1 ) is the term of additive Alee effect, 

m 1 and b 1 are the Alee effect constants; g ( U ) describes the Holling 

type-II functional response, in which c 1 is the maximum predation 

rate and K 1 measures the extent to which environment provides 

protection to U; h ( U,V ) describes a modified Leslie-Gower type nu- 

merical response, in which r 2 is the growth rate of the preda- 

tor, and c 2 and K 2 have similar meaning to c 1 and K 1 . With the 

functions described by Eqs. (2) , a reaction-diffusion predator–prey 

model with modified Leslie-Gower and Holling-Type II schemes 

and additive Alee effect is described. According to Cai et al. [12] , 

this model shows rich spatiotemporal dynamics. 

In this research, the CML model is developed based on dis- 

cretizing the dimensionless form of the above reaction-diffusion 

predator–prey model, which is described by the following equa- 

tions: 

∂u 

∂t 
= u 

(
1 − u − m 

u + b 
− cv 

u + k 1 

)
+ d 1 ∇ 

2 u, (3a) 
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