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a b s t r a c t 

In this article the authors describe the method of construction of approximate chaotic solutions of dy- 

namical model equations with quadratic nonlinearities in a general form using a new accurate numerical 

method. Numerous systems of chaotic dynamical systems of this type are studied in modern literature. 

The authors find the region of convergence of the method and offer an algorithm of construction and 

several criteria to check the accuracy of the approximate chaotic solutions. 
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1. Introduction 

Chaotic dynamical systems are difficult to analyze. A close 

formula giving the solution has not been found yet. Therefore 

numerical approximations are mandatory in order to follow the 

motion of a particle driven by a system of a nonlinear differential 

equation. 

Let us consider the system of a differential equations with 

quadratic nonlinearity 

˙ x = B 0 + B 1 x + ϕ(x ) , (1) 
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where x (t) = 

[
x (1) (t ) . . . x (m ) (t ) 

]T 
is a m -dimensional real vector 

function, B 0 is a given m -dimensional real column vector, 

ϕ(x ) = 

[
ϕ (1) (x ) . . . ϕ (m ) (x ) 

]T 

, 

ϕ (p) (x ) = 〈 Q p x, x 〉 , B 1 and Q p ( p = 1 , m ) are given real ( m × m ) ma- 

trices. 

Suppose that the system (1) has a bounded solution for t ≥ 0. 

Thus, the corresponding trajectory is attracted to the limit trajec- 

tory, see [1, pp. 338–340] . Hence, this trajectory determines the be- 

havior of the bounded solutions of the system (1) when time goes 

to infinity. The limiting trajectory can be a point of equilibrium, a 

cycle, or can be described by an almost periodic function or can 

have a more complicated structure such as a strange attractor. 

For some dynamical systems (1) the solutions are unstable on 

their attractors. It causes difficulties applying numerical methods 

for solving corresponding systems of ordinary differential equa- 
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tions (ODE). The problem is not limited to ODE with entire deriva- 

tives, but also for dynamical systems governed by fractional deriva- 

tives [2–4] . Many researchers use different numerical schemes 

based on classical methods, e.g. the explicit Euler scheme with the 

central-difference scheme [5] , the Adams scheme [6] , the higher 

derivatives scheme [7] , the 4th order Runge–Kutta method [8] and 

the second-order accurate Adams–Bashforth method [9] for the 

Lorenz system. However, the above methods cannot be used for 

(1) due to the instability of chaotic solutions, since the global er- 

ror increases with the size of the integration interval [10,11] . Stro- 

gatz [12, pp. 320-323] computes the estimate of the time T c when 

the trajectories of the system (1) decouple critically for the Lorenz 

system. In [11] the authors present the regression dependence to 

estimate T c for the integration step �t and the order N o of the nu- 

merical scheme 

T c (N o , �t) ≈ −2 . 6 N o lg �t (2) 

for the classical values of parameters of the Lorenz system. They 

also highlights that the numerical solution converges to differ- 

ent positions of equilibria for various values �t for the transient 

chaotic behavior. 

Most importantly, the result cannot be improved by decreas- 

ing the integration step �t , since the integration error has an ex- 

tremum as a function of �t . This problem can be solved by using 

high-accuracy calculations [13] . However, this approach restricts 

the study: on the one hand, the way to decrease the error is nar- 

row (to change �t and the accuracy of real number representation 

in order to control the calculation process); on the other hand, 

the number of operations needed for very small �t is large. The 

Runge–Kutta methods can be applied to obtain solutions with a 

higher accuracy, but the corresponding formulas for N o > 6 are 

extremely cumbersome [14,15] . 

In [16] the authors present the multistage spectral relaxation 

method (MSRM) which differs from the previous direct methods. 

They use the Chebyshev spectral method to solve the system (1) in 

the Gauss–Siedel form by an iteration scheme at each subinterval 

of integration. The advantage is that the accumulation of errors is 

not as great as it was in the direct methods. Motsa et al. com- 

pare the numerical results of MSRM with the piecewise successive 

linearization method [17] . However, the authors do not study the 

error of the method as an independent unit and increase the risk 

of rounding errors. 

To find approximate solutions of systems of differential equa- 

tions, the method of power series (or the method of Taylor series) 

is sometimes used. In [18–20] this method is used as the Adomian 

decomposition method (ADM). In those studies, the authors ob- 

tain the coefficients of expansion of the solution in a power series 

for different systems of the form (1) without finding the radius of 

convergence. The error of the approximate chaotic solution is only 

compared with the numerical results using the Runge–Kutta meth- 

ods. Vadasz and Olek [21] also study the dependence of ratio of 

coefficients of power series with respect to the number of terms 

in the series. 

In this article we consider a modification of the power series 

method (similar to ADM) for the system (1) . An advantage over 

the general scheme of the Taylor series method is that the expan- 

sion coefficients can be rapidly calculated by formulas in compari- 

son to the procedure of symbolic differentiation of the right-hand 

sides of the system equations (in the nonlinear case huge mem- 

ory is needed to store the symbol expressions in the calculation 

of the higher-order derivatives). Also, an estimate of the region 

of convergence of the power series is obtained, and some criteria 

for checking the accuracy of the approximate chaotic solutions are 

given in this article. Recently such an approach has been applied 

to the Lorenz and Chen systems [22,23] . Here, we generalize our 

results for the systems in the form (1) . 

2. Some examples of chaotic systems with quadratic 

nonlinearities 

In this section, we give several examples found in the literature 

on chaotic systems of the form (1) , for which our method can be 

applied. 

2.1. The well known Lorenz system 

{ 

˙ x (1) = σ
(
x (2) − x (1) 

)
, 

˙ x (2) = rx (1) − x (2) − x (1) x (3) , 

˙ x (3) = x (1) x (2) − bx (3) . 

For this system, the matrices are 

B 0 = 0 , B 1 = 

[ −σ σ 0 

r −1 0 

0 0 −b 

] 

, Q 1 = 0 , Q 2 = 

[ 

0 0 −1 

0 0 0 

0 0 0 

] 

, 

Q 3 = 

[ 

0 1 0 

0 0 0 

0 0 0 

] 

. 

2.2. The Chen system [24,25] 

{ 

˙ x (1) = a 
(
x (2) − x (1) 

)
, 

˙ x (2) = (c − a ) x (1) − x (1) x (3) + cx (2) , 

˙ x (3) = x (1) x (2) − bx (3) , 

for which the matrices are 

B 0 = 0 , B 1 = 

[ −a a 0 

c − a c 0 

0 0 −b 

] 

, Q 1 = 0 , Q 2 = 

[ 

0 0 −1 

0 0 0 

0 0 0 

] 

, 

Q 3 = 

[ 

0 1 0 

0 0 0 

0 0 0 

] 

. 

2.3. The Nose–Hoover oscillator [26] 

⎧ ⎨ ⎩ 

˙ x (1) = x (2) , 

˙ x (2) = −x (1) − x (2) x (3) , 

˙ x (3) = 

(
x 2 
(2) 

− 1 

)/ 

q. 

In this case, the matrices are 

B 0 = 

[ 

0 

0 

−1 /q 

] 

, B 1 = 

[ 

0 1 0 

−1 0 0 

0 0 0 

] 

, Q 1 = 0 , Q 2 = 

[ 

0 0 0 

0 0 −1 

0 0 0 

] 

, 

Q 3 = 

[ 

0 0 0 

0 1 /q 0 

0 0 0 

] 

. 

2.4. The Sprott–Jafari system [27] 

(we study this example in Section 7 to show the efficiency of 

our method) { 

˙ x (1) = x (2) , 

˙ x (2) = −x (1) + x (2) x (3) , 

˙ x (3) = x (3) + ax 2 
(1) 

− x 2 
(2) 

− b 
(3) 

with corresponding matrices 

B 0 = 

[ 

0 

0 

−b 

] 

, B 1 = 

[ 

0 1 0 

−1 0 0 

0 0 1 

] 

, Q 1 = 0 , Q 2 = 

[ 

0 0 0 

0 0 1 

0 0 0 

] 

, 
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