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a b s t r a c t

We provide a thermodynamic basis for compressible fluids of a Korteweg type that are
characterized by the presence of the dyadic product of the density gradients r. �r. in
the constitutive equation for the Cauchy stress. Our approach does not need to introduce
any new or non-standard concepts such as multipolarity or interstitial working and is
based on prescribing the constitutive equations for two scalars: the entropy and the
entropy production. In comparison with the Navier–Stokes–Fourier fluids we suppose that
the entropy is not only a function of the internal energy and the density but also of the den-
sity gradient. The entropy production takes the same form as for a Navier–Stokes–Fourier
fluid. For a Navier–Stokes–Fourier fluid one can express the entropy production equiva-
lently in terms of either thermodynamic affinities or thermodynamic fluxes. Following
the ideas of K.R. Rajagopal concerning the systematic development of implicit constitutive
theory and primary role of thermodynamic fluxes (such as force) that are cause of effects in
thermodynamic affinities (such as deformation) in considered processes, we further
proceed with a constitutive equation for entropy production expressed in terms of thermo-
dynamic fluxes. The constitutive equation for the Cauchy stress is then obtained by max-
imizing the form of the rate of entropy production with respect to thermodynamic
fluxes keeping as the constraint the equation expressing the fact that the entropy produc-
tion is the scalar product of thermodynamic fluxes and thermodynamic affinities. We also
look at how the form of the constitutive equation changes if the material in question is
incompressible or if the processes take place at constant temperature. In addition, we pro-
vide several specific examples for the form of the internal energy and make the link to
models proposed earlier. Starting with fully implicit constitutive equation for the entropy
production, we also outline how the methodology presented here can be extended to non-
Newtonian fluid models containing the Korteweg tensor in a straightforward manner.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In 1901, Korteweg published the paper [10] where he proposed to model phase transition phenomena in fluids by the
stress tensor T depending on the gradient of the density . and the gradient of the velocity v in the following manner
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T ¼ ð�pþ a0jr.j2 þ a1D.ÞIþ bðr.�r.Þ þ 2lDðvÞ þ kðdivvÞI: ð1:1Þ

Here, p denotes the thermodynamic pressure being a function of ., DðvÞ stands for the symmetric part of the velocity
gradient and a0, a1, b, l and k are material moduli that may depend on . as well.

One can split the complicated response (1.1) into the standard Navier–Stokes model for compressible fluids characterized
by the constitutive equation

Tns ¼ �pIþ 2lDðvÞ þ kðdivvÞI; ð1:2Þ

and the capillarity stress Tc of the form

Tc ¼ ða0jr.j2 þ a1D.ÞIþ bðr.�r.Þ: ð1:3Þ

The stress Tc was introduced to provide a smooth interface model as an alternative to the classical theory of sharp inter-
faces, which specifies a jump condition at the surface separating fluids possessing different densities.

It is also worth noting that the Cauchy stress formula (1.1) can be decomposed into the elastic and dissipative parts:

Tdis ¼ 2lDðvÞ þ kðdivvÞI; ð1:4Þ
Telast ¼ ð�pþ a0jr.j2 þ a1D.ÞIþ bðr.�r.Þ: ð1:5Þ

Korteweg, see [10], derived a continuous model for fluids which can appear in their liquid and vapor phases. To this aim,
he followed the idea of Van der Waals [20] who observed that the boundary between the two phases should not be a sharp
interface but rather a thin transition zone of very steep density gradient. Based on this assumption Korteweg made some
considerations on the possible interactions between the molecules in two neighbored infinitesimal representing volume ele-
ments and obtained an additional contribution to the stress tensor for the Navier–Stokes fluids which reads as

Tc ¼ ajr.j2Iþ br.�r.� cD.I� drð2Þ.; ð1:6Þ

where especially the term br. �r. is today generally known as Korteweg tensor.
Eq. (1.1) represents a very complicated relationship in comparison to (1.2) and there has been a constant, to our opinion

not fully satisfactory, effort to find out whether or not the model (1.1) is consistent with the basic concepts of continuum
thermodynamics, see Dunn and Serrin [6], Anderson et al. [1], Mehrabadi et al. [13]. In addition, one may be interested in
various generalizations of (1.1) that would be capable to capture thermal effects, further non-Newtonian phenomena such
as shear-thinning or stress relaxation, or on the other hand to get simplifications if the constraint of incompressibility of the
material is applicable. This is certainly a non-trivial task in particular if one does it in an ad hoc manner.

Thus, one of the main points of this paper is to provide a thermodynamic well-sounded basis that would lead to (1.1) as a
special case and that would be suitable for possible generalizations. There have been several approaches. Most of those based
on the framework of continuum thermodynamics start with a general form for the Cauchy stress that is related explicitly to
other quantities such as the velocity gradient, the density and their gradients (see for example [19]). This traditional ap-
proach usually results in models which have too many constants (or more generally material functions). The second law
of thermodynamics is then used to provide restrictions on these coefficients. Due to apriori posed dependence of the stress
tensor on the density gradient this method leads to some inconsistencies that were artificially overcome by introducing con-
cepts such as the interstitial working, balance of self-equillibrated force system, multipolarity, see Dunn and Serrin [6],
Anderson et al. [1], Cowin and Goodman [4], Mehrabadi et al. [13]. Our aim is to avoid any such questionable concepts.

The framework of the present approach is outlined by standard forms of the balance equation (mass, linear and angular
momentum, energy) for a single continuum. Instead of making any assumption on the structure of the constitutive equation
for the Cauchy stress tensor T we rather prescribe constitutive equations for two scalars: the entropy and the entropy pro-
duction. In comparison with the Navier–Stokes–Fourier fluids we suppose that the entropy is not only a function of the inter-
nal energy and the density but also of the density gradient. The entropy production takes the same form as for the Navier–
Stokes–Fourier fluid. While for Navier–Stokes–Fourier fluids one can express the entropy production equivalently in terms of
either thermodynamic affinities or thermodynamic fluxes it seems essential for our study that we use the form expressed in
terms of thermodynamic fluxes. We follow the ideas of K.R. Rajagopal concerning the systematic development of implicit
constitutive theory (see [14,15]) and primary role of thermodynamic fluxes (such as force per unit area, heat flux) that cause
changes in thermodynamic affinities (such as velocity and temperature gradients) in considered processes in a given mate-
rial. The constitutive equations for the Cauchy stress and the heat flux are then obtained by maximizing the form of the en-
tropy production with respect to thermodynamic fluxes keeping as the constraint the equation expressing the fact that the
rate of entropy production is the scalar product of thermodynamic fluxes and thermodynamic affinities.

The approach presented here carries on several recent studies connected with ideas of K.R. Rajagopal. The contributions
which have a very strong impact on the appearance of this work are the following: (1) The paper by Rajagopal and Srinivasa
[17] where a general robust framework to constitutive theory in the area of continuum thermodynamics is described. They
also present in detail the concept of natural configuration and the role/meaning of a principle of maximization of the entropy
production in the systematic derivation of constitutive relations. (2) The paper by Rajagopal and Srinivasa [18] where
implicit constitutive theory is combined with the principle of maximization of entropy production in which maximization
is taken with respect to thermodynamic fluxes for the first time. (3) The paper [11] where the authors were successful in
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