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In this paper, the stabilization and synchronization of chaotic systems are investigated by means of in- 

termittent control. At first, a generalized intermittent control and its adaptive strategy are introduced, 

in which the traditional periodic intermittent control and the aperiodic case are unified. Based on the 

designed control protocols, by applying comparison principle, the method of piecewise auxiliary func- 

tion, piecewise analysis technique and the theory of series, some novel and effective criteria are derived 

to ensure the stabilization and synchronization of chaotic systems. Finally, two numerical examples are 

provided to verify the theoretical results. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Chaos, firstly presented by Lorenz in a simple three-dimens- 

ional autonomous system [1] , is an interesting nonlinear phe- 

nomenon and has been extensively investigated in the mathemat- 

ics, engineering, physics and other related fields [2] . Although it is 

a very attractive subject, due to its sensitive dependence on initial 

conditions, chaos was believed in a long time to be neither pre- 

dictable nor controllable. In 1990, the introduction of OGY control 

method by Ott. Grebogi Yorke completely denied the viewpoint [3] . 

During the past few decades, the controlling problem of chaotic 

systems, including stabilization and synchronization, has been one 

of the extensive research subjects and many useful control meth- 

ods are developed such as linear feedback control [4] , time-delay 

feedback control [5] , adaptive control [6] , fuzzy control [7] , slid- 

ing mode control [8] , impulsive control [9] , event-triggered control 

[10] , and intermittent control [11] . 

Intermittent control, as a new type of discontinuous control, 

was first introduced to control linear econometric models [12] and 

has a wide application in manufacturing, transportation and com- 

munication. For instance, in communications, intermittent control 

scheme is usually used as a central means of transmitting informa- 

tion between transmitter and receiver in order to realize synchro- 

nization. Intermittent control scheme is composed of work time (or 

control time) and the rest time in turn, the controller is activated 

in each work time and is off in the rest time. Compared with im- 
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pulsive control, intermittent control is easier to be implemented 

due to it has a nonzero duration called control time. Recently, 

a periodic case, called periodically intermittent control, has been 

successfully applied to stabilize and synchronize neural networks 

[13–20] , complex networks [21–25] , chaotic systems [26–31] . To 

cut down control gains, Liu and Chen [32] proposed a centralized 

adaptive intermittent periodically control and some criteria based 

on rigorously theoretical analysis were provided to guarantee clus- 

ter synchronization of complex networks. In [33] , a decentralized 

adaptive intermittent periodically control was introduced based on 

pinning strategy to realize synchronization of directed networks. 

It is noted that the designed intermittent controller in [13–

33] is periodic, as pointed out in [34,35] , the periodic intermittent 

control may be inadequate in the practical application. For exam- 

ple, the generation of wind power is typically aperiodically inter- 

mittent. Furthermore, the intermittent control scheme fills the gap 

between continuous control and impulsive control, while the usual 

impulsive control requires aperiodic property for its control time 

period [35] . Therefore, in both application and theoretical analysis, 

it is of significance to investigate the control problem of nonlin- 

ear systems via aperiodic intermittent control. In [34–36] , based 

on pinning control, an aperiodically intermittent control with its 

adaptive law were introduced to guarantee global synchronization 

of complex networks. 

Notice that the two types of intermittent control, periodic 

case and aperiodic case, were separately discussed in the previ- 

ous works. Hence, it is natural to raise the following problems: is 

there a general framework design to unify periodic and aperiodic 

intermittent control? If yes, how to design a generalized intermit- 
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tent control? Under such control scheme, how to theoretically ana- 

lyze the stabilization and synchronization of the controlled system, 

how to establish and obtain the corresponding criteria? However, 

to the best of our knowledge, they have received little attention 

up to now. Hence, it is urgent and significant to propose and solve 

those questions in theory. 

Motivated by the above analysis, the aim of this paper is to 

discuss stabilization and synchronization of chaotic systems by 

means of a generalized intermittent control protocol and its adap- 

tive strategy. First, as an important preliminary, a generalized in- 

termittent control and its adaptive strategy are designed, in which 

the traditional periodic intermittent control [13–33] and the aperi- 

odic case [34–36] are included and unified. Secondly, by means of 

comparison principle, some novel and simple stabilization criteria 

are derived under the generalized intermittent control with con- 

stant control gains. Compared with the recent works [27,28] , the 

proposed technique here is different from their piecewise analysis 

means and the established criteria are simpler and more practi- 

cal. Besides, to cut down the control gains, a new adaptive law of 

intermittent control is proposed to realize stabilization by means 

of the method of piecewise auxiliary function, piecewise analysis 

technique and the theory of series. As a similar result, the syn- 

chronization of chaotic systems is considered, the corresponding 

control protocols and the synchronization criteria are also given. 

Finally, numerical simulations are presented to show the effective- 

ness of the proposed method. 

The rest of the paper is organized as follows. In Section 2 , some 

preliminaries are given. The stabilization and synchronization of 

chaotic systems are respectively proposed via the designed inter- 

mittent control in Sections 3 and 4 . In Section 5 , the effectiveness 

and feasibility of the developed methods are shown by a numerical 

example. 

Notations. In this paper, let R = (−∞ , + ∞ ) be the set of all 

real numbers, R n is an n -dimensional real Euclidean space with 

norm ‖·‖ , R n × n denotes the set of all n × n real matrices. For 

a real matrix A , A 

T denotes its transpose. Let Z + be the set of all 

non-negative integers. I denotes the n -dimensional unit matrix. 

2. Preliminaries 

In this paper, we consider a class of nonlinear chaotic systems 

described by the following differential equations 

˙ x (t) = Ax (t) + B f (x (t)) + J, (1) 

where x (t) = (x 1 (t ) , · · · , x n (t )) T ∈ R n is the state vector, f : R n → R n 

is a nonlinear vector function, A ∈ R n × n and B ∈ R n × n are two 

constant matrices, J = (J 1 , · · · , J n ) T is a constant vector which may 

be an external disturbance or the system bias. 

To establish our main results, it is necessary to give the follow- 

ing assumption for system (1) . 

Assumption 1. The nonlinear function f is continuous and satisfies 

the Lipschitz condition, that is, there is a constant L > 0 such that 

for x , y ∈ R n , one has 

‖ f (x ) − f (y ) ‖ ≤ L ‖ x − y ‖ . 

3. Stabilization problem 

In this section, two control schemes will be designed to stabi- 

lize nonlinear system (1) to the desired state x ∗, which is an equi- 

librium point of (1) and we assume that it always exists in this 

paper. 

3.1. Intermittent control with constant control gains 

To achieve the stabilization, firstly, a generalized intermittent 

control with constant control gains is designed. The controlled sys- 

tem of (1) can be described by the following form 

˙ x (t) = Ax (t) + B f (x (t)) + J + u (t) , (2) 

where u ( t ) is a control input which is designed as the following 

form 

u (t) = − ˆ d (t )(x (t ) − x ∗) (3) 

with 

ˆ d (t) = 

{
d, t k ≤ t ≤ δk , 

0 , δk < t < t k +1 , 

here k ∈ Z + , d > 0 is a constant, t k < δk < t k +1 < δk +1 . 

Remark 1. Recently, intermittent control has been extensively con- 

cerned, periodic and aperiodic cases have been separately dis- 

cussed. To unify them, a general framework design, the gener- 

alized intermittent control protocol (3) is introduced in this pa- 

per, which contains the traditional periodically intermittent con- 

trol [13–33] and the aperiodic case [34–36] . Especially, if for all 

k ∈ Z + , t k +1 − t k = T and δk − t k = σT , where T > 0 and 0 < σ < 1, 

the generalized intermittent control (3) is reduced to the following 

periodically intermittent control 

u (t) = 

{−d(x (t) − x ∗) , t 0 + kT ≤ t ≤ t 0 + (k + σ ) T , 

0 , t 0 + ( k + σ ) T < t < t 0 + ( k + 1) T , 
(4) 

where k ∈ Z + = { 0 , 1 , 2 , · · · , } , d > 0 is the control gain. 

To derive the main results, the following assumption is given. 

Assumption 2. There exist two finite constants T > θ > 0 such 

that 

inf 
k ∈ Z + 

{ δk − t k } = θ, 

sup 

k ∈ Z + 
{ t k +1 − t k } = T . 

Theorem 1. Based on Assumptions 1 –2 , if 

lim 

m → + ∞ 

m ∑ 

l=1 

[ 
λ(t l − t l−1 ) − 2 d(δl−1 − t l−1 ) 

] 
= −∞ , (5) 

then the equilibrium point x ∗ of system (1) is stabilized under the con- 

trol scheme (3) , where λ is the maximum eigenvalue of the matrix 

A + A 

T + εBB T + ε −1 L 2 I, ε > 0 . 

Proof. Let y (t) = x (t) − x ∗, then the error system can be easily de- 

rived as the following form 

˙ y (t) = Ay (t) + B ( f (y (t) + x ∗) − f (x ∗)) + u (t) . (6) 

Construct the following Lyapunov function 

V (t) = 

1 

2 

y T (t) y (t) . (7) 

Then, by Assumption 1 , the right upper Dini derivative of V ( t ) 

along the trajectory of the error system (6) can be calculated as 

follows 

D 

+ V (t) = y T (t)[ Ay (t) + B ( f (y (t) + x ∗) − f (x ∗)) + u (t)] 

≤ 1 

2 

y T (t)[ A + A 

T + εBB 

T + ε −1 L 2 I] y (t) − ˆ d (t ) y T (t ) y (t ) 

≤ (λ − 2 ̂

 d (t )) V (t ) . (8) 

Hence, for all t ≥ t 0 , one has 

V (t) ≤ V (t 0 ) exp 

{ 

∫ t 

t 0 

(λ − 2 ̂

 d (s )) ds 

} 

. (9) 

Evidently, for any t ≥ t 0 , there exists a nonnegative integer m ∈ Z + 

such that t m 

≤ t < t m +1 . According to (9) , 

V (t) ≤ V (t 0 ) exp 

{ m ∑ 

l=1 

∫ t l 

t l−1 

(λ − 2 ̂

 d (s )) ds 

} 
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