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a b s t r a c t 

We consider a family of one-dimensional continuous piecewise smooth maps with monotone increasing 

and monotone decreasing branches. It is associated with a credit cycle model introduced by Matsuyama, 

under the assumption of the Cobb-Douglas production function. We offer a detailed analysis of the dy- 

namics of this family. In particular, using the skew tent map as a border collision normal form we obtain 

the conditions of abrupt transition from an attracting fixed point to an attracting cycle or a chaotic at- 

tractor (cyclic chaotic intervals). These conditions allow us to describe the bifurcation structure of the 

parameter space of the map in a neighborhood of the boundary related to the border collision bifurca- 

tion of the fixed point. Particular attention is devoted to codimension-two bifurcation points. Moreover, 

the described bifurcation structure confirms that the chaotic attractors of the considered map are robust, 

that is, persistent under parameter perturbations. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The one-dimensional (1D for short) piecewise smooth (PWS for 

short) map considered in the present paper defines an important 

credit cycle model first introduced by Matsuyama in [20] . This 

model generates endogenous fluctuations of borrower net worth 

and aggregate investment, following the same trend as several 

micro-founded, dynamic general equilibrium models of financial 

frictions, in which the steady state is unstable , and persistent fluc- 

tuations occur without exogenous shocks (see, for example, [1,3,21] ). 

Such an approach differs from the basic ideas of a vast majority 

of the macroeconomics literature on financial frictions that follows 

the seminal works [6] and [18] , and continues to study amplifica- 

tion effects of financial frictions within a setting that ensures the 

existence of a stable steady state toward which the economy would 

gravitate in the absence of recurring exogenous shocks. In fact, the 

idea that market mechanisms are inherently dynamically unstable 

can be traced back at least to Goodwin [12] . Recent events have 
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also renewed interest in the hypothesis that financial frictions are 

responsible not only for amplifying the effects of exogenous shocks 

but also for causing macroeconomic instability (see, e.g., [17] and 

[25] ). 

A detailed description of the Matsuyama model can be found 

in [20] and [22] (see also [23] ). It is defined by a 1D map which 

consists of upward, downward, and flat branches. Furthermore, as 

discussed in [23] , when the production function is Cobb-Douglas, 

the map depends on four parameters. The bifurcation structure of 

the parameter space of this map significantly depends on whether 

the constant branch is involved into asymptotic dynamics or not. 

In our companion paper [32] we study in detail the case where all 

three branches are involved, demonstrating that it is characterized 

by periodicity regions related to superstable cycles existing due the 

constant branch, and that these regions are ordered according to 

the well known U-sequence distinctive for unimodal maps (first de- 

scribed in [24] , see also [13] ), which is adjusted to the considered 

map. 

In the present paper we analyze the dynamics of the map when 

the constant branch does not participate in the asymptotic dynam- 

ics. Such a map belongs to a class of 1D PWS continuous unimodal 

maps possessing quite complicated dynamics which, depending on 

the parameters, is characterized by attracting cycles of any pe- 
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riod, as well as cyclic chaotic intervals. The mechanisms govern- 

ing the transitions between such attractors under parameter varia- 

tion are already described in our paper [23] . The main purpose of 

the present work is to give detailed proofs of the related results 

and to describe the overall bifurcation structure of the parameter 

space of the map, evidencing the role of codimension-two bifurca- 

tion points. 

From the point of view of nonlinear dynamics theory the main 

feature of the considered map is its non smoothness . In fact, as we 

mentioned above, the map is given by two different smooth func- 

tions whose definition regions are separated by a border point at 

which the system function is not differentiable. As a result, under 

variation of a parameter it is possible to observe not only bifur- 

cations typical for 1D smooth maps (such as, for example, flip bi- 

furcation of a fixed point related to its eigenvalue crossing −1 , or 

homoclinic bifurcation related to a contact of a stable and unstable 

sets of a repelling fixed point), but border collision bifurcations (BCB 

for short) as well, which are characteristic of nonsmooth systems 

(see [5,14,15,26] ). Recall that a BCB occurs when an invariant set, 

for example, a fixed point or cycle, collides with a border point. 

The result of such a bifurcation can be a direct transition from an 

attracting fixed point to a chaotic attractor that is impossible in 

smooth systems. Such an abrupt transition to chaos in a 1D PWS 

map can be observed also due to a degenerate bifurcation which 

is related to the eigenvalue of a fixed point (or cycle) crossing 1 

or −1 in presence of a particular degeneracy of the system func- 

tion. For example, a degenerate flip bifurcation (DFB for short) of a 

fixed point occurs when its eigenvalue crosses −1 and the related 

branch of the function at the bifurcation value is linear or linear 

fractional (see [31] ). Note that a general bifurcation theory for non- 

smooth dynamical systems has not yet such a complete form as 

the one established for smooth systems. As an important advance- 

ment towards such a theory we refer to the books [34] , [10] . Ex- 

amples of PWS models coming from economic applications can be 

found in [7,9,11,15,28] , to cite a few. 

As one of the main contributions of the present paper we give 

the conditions under which abrupt transitions via a BCB from an 

attracting fixed point to an attracting cycle or to a chaotic attrac- 

tor are observed. Such conditions are obtained by using a 1D piece- 

wise linear map defined by two linear functions, called skew tent 

map . The dynamics of the skew tent map are completely described 

depending on the slopes of the linear branches (see [16,19] ) that 

makes it possible to use this map as a border collision normal form 

( [5,27,29,30] ). 

The skew tent map is used to classify not only the BCB of the 

fixed point, mentioned above, but BCBs of the attracting n -cycles 

as well, n ≥ 3. More precisely, we show that one boundary of the 

periodicity region related to an attracting n -cycle is associated (at 

least in a certain neighbourhood) with the so-called fold BCB . The 

crossing of this boundary leads to the appearance of a couple of n - 

cycles, one attracting and one repelling. This bifurcation is to some 

extent similar to the smooth fold bifurcation, being, however, not 

related to an eigenvalue equal to 1. Another boundary of the n - 

periodicity region is related to the smooth flip bifurcation, sub- or 

supercritical. 

It is known that one more distinctive feature of PWS maps is 

associated with robust chaotic attractors (see [4] ), that means that 

in the parameter space of a PWS map an open region may exist, 

called chaotic domain, related to chaotic attractors persistent un- 

der parameter perturbations. Considering a chaotic attractor which 

consists of n cyclic intervals, n ≥ 1, under parameter variation in- 

side a chaotic domain bifurcations can be observed at which the 

number of intervals constituting the chaotic attractor changes. In 

particular, a merging bifurcation is related to the transition from 

2 n - to n -cyclic chaotic attractor. It is caused by the first homoclinic 

bifurcation of a repelling cycle with negative eigenvalue, located at 

the immediate basin boundary of the attractor. An expansion bifur- 

cation occurs when a chaotic attractor abruptly increases in size 

filling the complete absorbing interval due to the first homoclinic 

bifurcation of a repelling cycle with positive eigenvalue (see [2] for 

details). By using the skew tent map we get the conditions of the 

homoclinic bifurcations leading to merging and expansion bifurca- 

tions in the considered map. 

The paper is organized as follows. In Section 2 we describe 

the map, its fixed points and the conditions of their stability. 

The parameter region we are interested in is confined by three 

boundaries. One of them is related to a contact of the absorbing 

interval with the border point (crossing this boundary the con- 

stant branch becomes involved into asymptotic dynamics), and two 

other boundaries are related to the bifurcations of a fixed point as- 

sociated with the downward branch of the map. Namely, crossing 

one of such boundaries a BCB of this fixed point occurs, whose 

possible results are listed in Section 3 (see Proposition 1) and 

proved using the skew tent map as a border collision normal form. 

The second boundary is related to the flip bifurcation described in 

Section 4 (see Proposition 2). In Section 5 it is discussed the over- 

all bifurcation structure of the parameter space of the considered 

map, emphasizing the role of codimension-two bifurcation points. 

Section 6 concludes. 

2. Description of the map, its fixed points and their 

bifurcations 

We consider a 4-parameter family of 1D piecewise smooth 

maps defined as 

T : w �→ T (w ) 

= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

T L (w ) = w 

α if 0 < w < w c , 

T M 

(w ) = 

[ 
1 

μβ

(
1 − w 

m 

)] α
1 −α

if w c < w < w μ, 

T R (w ) = β
α

α−1 if w ≥ max { w c , w μ} , 
(1) 

where α, β , μ and m are real parameters such that 

0 < α, μ < 1 , β ≡ B 

1 − α

α
> 0 , 1 < m < 

1 

1 − α
, (2) 

w c and w μ are the border points defined by 

w 

1 −α
c = 

1 

μβ
max 

{ 

1 − w c 

m 

, μ
} 

, w μ = m (1 − μ) . (3) 

Map T describes the dynamic trajectory of the entrepreneur net 

worth w in a credit cycle model, first introduced in [20] , under 

the additional assumption that the aggregate production function 

is Cobb-Douglas (see [23,32] ). 

In the simplest case map T is defined only by the branches 

T L ( w ) and T R ( w ) with the border point w c = ( w B ) 
1 /α . The bound- 

ary in the parameter space defined by 

β = (m (1 − μ)) α−1 (4) 

is related to the appearance of the middle branch in the definition 

of T . Namely, for β > (m (1 − μ)) α−1 map T can be written in the 

following form: 

T : w �→ T (w ) 

= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

T L (w ) = w 

α if 0 ≤ w ≤ w c , 

T M 

(w ) = 

[ 
1 

μβ

(
1 − w 

m 

)] α
1 −α

if w c < w < w μ, 

T R (w ) = w B if w > w μ. 

(5) 

Note that T maps (0, 1] into itself, so that we restrict T on (0, 1] 

from now on. 
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