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a Czech Technical University, Faculty of Civil Engineering, Thákurova 7, 166 29 Prague, Czech Republic
b Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Prague, Czech Republic
c Institute of Information Theory and Automation of the ASCR, Pod vodárenskou věží 4, 182 08 Prague, Czech Republic
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a b s t r a c t

The review is focused on two methods of formulation and solution of the subgrain forma-
tion problem: an energetic approach and a model of incremental deformations. Both meth-
ods are based on a reduced single slip version of crystal plasticity. The mathematical
analysis of the energetic approach is done for a single slip model only; in the incremental
approach the deformation are assumed small, hence, multi slip can be treated as a sum of
single slips. The energetic approach has been employed in analysis of the crystal plasticity
model of shear and kink bands. The incremental higher strain gradient model provides an
insight into an initial stage of the subgrain formation and the mechanism controlling the
subgrain size.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Formation of misoriented structural elements, typically in a form of subgrains or misoriented dislocation cells (in the fol-
lowing text we use the short term ‘‘subgrains”), is a fundamental process of dislocation patterning accompanying plastic
deformation [1]. Subgrains can be found in plastically deformed metals on very different scales, from sub-micron subgrains
induced by severe plastic deformation to mm-size subgrains in metals deformed near the melting temperature. The impor-
tance of the phenomenon is recognized by considering the process of work hardening, which is clearly correlated with for-
mation of subgrains.

Conventional explanations of formation of subgrains assume either a pre-existing structure of obstacles in the crystal [2]
or use statistical arguments [3,4]. In the statistical approach misoriented dislocation structures are considered as a random
accumulation process of excess dislocations in dislocation boundaries. Two types of boundaries are distinguished: ordinary
boundaries are assumed to be caused by a statistical mutual trapping of dislocations and excess dislocations are accumulated
by stochastic reasons only, whereas a different activation of slip systems is expected on both sides of planar dislocation
boundaries termed geometrically necessary boundaries. As noted in [4], such imbalance in the activation of slip systems be-
tween different regions can arise from an intrinsic instability of the deformation process.

As shown in the present paper, the reason for the plastic deformation being non-homogeneous is a possible instability of
homogeneous plastic flow driven by energy minimization. The long-range internal stresses which would be set up by defor-
mation of a single volume element are reduced by deformation and rotation of neighboring volume elements [5,6]. Accord-
ing this alternative approach, dislocations are forced by the laws of non-linear continuum mechanics to arrange themselves
into patterns of varying density. From this point of view, the intrinsically developed inhomogeneity of plastic deformation is

0020-7225/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijengsci.2010.09.017

⇑ Corresponding author at: Czech Technical University, Faculty of Civil Engineering, Thákurova 7, 166 29 Prague, Czech Republic.
E-mail address: kratochvil@fsv.cvut.cz (J. Kratochvíl).

1 Present address: AREVA NP, Erlangen, Germany.

International Journal of Engineering Science 48 (2010) 1401–1412

Contents lists available at ScienceDirect

International Journal of Engineering Science

journal homepage: www.elsevier .com/locate / i jengsci

http://dx.doi.org/10.1016/j.ijengsci.2010.09.017
mailto:kratochvil@fsv.cvut.cz
http://dx.doi.org/10.1016/j.ijengsci.2010.09.017
http://www.sciencedirect.com/science/journal/00207225
http://www.elsevier.com/locate/ijengsci


the basic reason for subgrain formation. In addition to the macroscopic instabilities of plastic deformation in the form of
necking or shear band formation, there is an instability in the form of internal buckling [7–9]. This instability is made pos-
sible by the inherent anisotropy of plastic deformation. Under certain circumstances, more energy is needed in the uniform
plastic deformation than is required to initiate an internal mode of buckling. In such a case, the internal instability makes its
appearance. It has been suggested to interpret the internal instability of homogeneous plastic flow in terms of the formation
of subgrains in [10–13]. It has been shown that the internal buckling leads to the build up of lattice misorientations between
neighboring volume elements. The periodic patterns of excess dislocations necessary to accommodate the lattice misorien-
tations were interpreted as the beginning of subgrain formation.

The aim of this work is to review shortly the latter approach, focusing attention on two methods of formulation and solu-
tion of the subgrain formation problem: an energetic approach, Section 3, and a model of incremental deformations, Section
4. The methods are of a different origin and remain disjointed at present using even different scientific language; hopefully
they will converge in the future. Both methods are based on a reduced single slip version of crystal plasticity. The detail
mathematical analysis of the energetic approach is done for a single slip model only; in another energetic attempt [14] multi
slip is treated as a succession of single slips. In the incremental approach the deformation are assumed small, hence, multi
slip can be treated as a sum of single slips.

The energetic method employed in crystal plasticity has been inspired by the very successful mathematical theory of rate-
independent processes [15]. The energetic approach in crystal plasticity leads to a problem of a minimization of an energy
functional subjected to boundary conditions and dissipation inequality. The minimization may result in a spontaneous struc-
tural inhomogeneity (subgrains can be treated as a composition of lamellar deformation modes, Sections 3 and 4). The exact
mathematical proof of the existence of lamellar structures was given by Conti and Theil [16] for a single slip rigid-plastic
model with zero hardening (elastic deformation is reduced to lattice rotations and the hardening coefficient h = 0). Moreover,
they predicted existence of a boundary layer which accommodates the lamellar structure to displacement boundary condi-
tions. Their results indicate that the dominant effect, which causes formation of the lamellar structure, is the minimization of
the dissipative energy (the rigidity excludes the elastic energy and h = 0 causes no change of the dislocation stored energy).
The energetic approach has been employed in analysis of the crystal plasticity model of shear and kink bands [17] summa-
rized in Section 3.

The other method presented in Section 4 is based on mechanics of incremental deformations proposed by Biot [9]. The
theory provides rigorous and completely general equations governing the dynamics and stability of solids and fluids under
initial stress in the context of small perturbations. It is applicable to anisotropic, viscoelastic, or plastic media. In Section 4
Biot’s approach is employed in an analysis of a strain gradient rigid-plastic model of crystalline solids [13]. It provides an
insight into an initiation of the subgrain formation and into the mechanism controlling the subgrain size. In order to intro-
duce a physically relevant scale to our problem we assume, following earlier works of Dillon and Kratochvíl [18], that the
energy in the system depends also on the gradient of the plastic variables. The gradient terms represent non-local effects
caused by short-range interactions among dislocations. It is not clear, however, which function of the gradient should be
used. We refer to Kratochvíl and Sedláček [19], and to Groma and Bakó [20] for attempts to derive it from statistics of dis-
crete dislocations which reveal the complexity of the problem. Constitutive relations of gradient continua are advocated e.g.
by Gurtin [21], Mainik and Mielke [22], or Conti and Ortiz [14] and also investigated in [23] mostly in relation to the so-called
size effect. Mathematical theory of rate-independent isothermal evolution with gradients of plastic variables is developed in
[24]. An interesting recent contribution by Gurtin and Anand [25] discusses the flow rules for rate-independent gradient
plasticity proposed by Fleck and Hutchinson. As a key result, they showed that the flow rule of Fleck and Hutchinson [26]
is incompatible with thermodynamics unless its nonlocal term is skipped. A physically sound gradient plasticity theory with-
in the framework of small deformations is developed in [27]. A survey of non-local models in plasticity appeared in Bažant
and Jirásek [28]. Numerical approaches are surveyed in [29,30].

2. Crystal plasticity

The energetic and incremental methods are based on the crystal plasticity framework introduced in classical papers, e.g.
[31,32] and recalled e.g. in [21]. In the present paper the rigid-plastic, rate independent approximation to crystal plasticity is
considered; this framework seems to be sufficient to catch the essence of the subgrain formation problem.

Each material point of a crystal can be identified by its position in a reference configuration. The point which was at posi-
tion X in the reference configuration is in the current configuration in time t in the position x(X, t). The difference u = x � X is
the displacement of the material point X. The deformation of the material is described by the transformation F of an infin-
itesimal material fiber from the reference to the current configuration,

dx ¼ FdX: ð1Þ

Assuming that x(X, t) is a continuous and differentiable vector field, this transformation can be introduced as the deformation
gradient F = @x/@X = I + @u/@X, where I is the second order identity tensor. In the rigid-plastic approximation the crystal lat-
tice can (rigidly) rotate but it is not (elastically) strained. The plastic deformation of a crystal can be decomposed in two
steps. First, the material flows through the crystal lattice by shearing along the active slip systems to reach an intermediate
configuration. This step is described by the plastic deformation gradient Fp, detFp = 1. Second, the plastic deformation Fp is
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