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a b s t r a c t 

This paper deals with a strongly coupled reaction-diffusion system modeling a competitor-competitor- 

mutualist three-species model with diffusion, self-diffusion and nonlinear cross-diffusion and subject to 

Neumann boundary conditions. First, we establish the persistence of a corresponding reaction-diffusion 

system without self- and cross-diffusion. Second, the global asymptotic stability of the unique positive 

equilibrium for weakly coupled PDE system is established by using a comparison method. Moreover, un- 

der certain conditions about the intra- and inter-species effects, we prove that the uniform positive steady 

state is linearly unstable for the cross-diffusion system when one of the cross-diffusions is large enough. 

The results indicate that Turing instability can be driven solely from strong diffusion effect of the first 

species (or the second species or the third species) due to the pressure of the second species (or the first 

species). 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Let � be a bounded domain in R 

N with smooth boundary ∂�. 
In this paper, we are interested in a strongly coupled reaction- 
diffusion system 

⎧ ⎪ ⎨ 

⎪ ⎩ 

u 1 t − �[(d 1 + α11 u 1 + α12 u 2 + 
α13 

β+ u 3 
) u 1 ] = u 1 (a − u 1 −

δu 2 
1+ mu 3 

) in � × (0 , ∞ ) , 

u 2 t − �[(d 2 + α21 u 1 + α22 u 2 ) u 2 ] = u 2 (b − u 2 − ηu 1 ) in � × (0 , ∞ ) , 

u 3 t − �[(d 3 + 
α31 

γ + u 1 + α33 u 3 ) u 3 ] = u 3 (c − u 3 
L 0 + nu 1 

) in � × (0 , ∞ ) 

(1.1) 

with initial and boundary value conditions 

∂u 1 

∂ν
= 

∂u 2 

∂ν
= 

∂u 3 

∂ν
= 0 on ∂� × (0 , ∞ ) , 

u i (x, 0) = u i 0 (x ) ≥ ( �≡)0 in � for i = 1 , 2 , 3 , (1.2) 

where ν is the unit outward normal to ∂�, d i (i = 1 , 2 , 3) , a, 

b, c, δ, m, η, L 0 , n, β and γ are all positive constants, αii (i = 

1 , 2 , 3) , α12 , α13 , α21 and α31 are nonnegative constants. a, b and 

c are intrinsic growth rates of the three species, respectively, while 

δ, m, η, L 0 and n describe inter-species interactions. This system 

represents a model which involves interacting and migrating in the 

same habitat � among a competitor u 2 , a competitor-mutualist u 1 
and a mutualist u 3 . The populations are not homogeneously dis- 

tributed due to the consideration of diffusions and cross-diffusions. 
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For more biological meaning of the parameters, one can make a 

reference to [15,17] . 

The spatially homogeneous ODEs of (1.1) was initiated by Rai 

et al. [15] . Sufficient criteria for the boundedness of global so- 

lution and the local stability or instability of various equilibria 

were established. Zheng [27] then extended and considered the 

corresponding reaction-diffusion system ( α11 = α22 = α33 = α12 = 

α13 = α21 = α31 = 0 in (1.1) ) under Dirichlet and Neumann bound- 

ary conditions. He discussed the local stability of positive equi- 

librium and the stability of various semitrivial steady states. Xu 

[23] investigated some sufficient conditions under which there is 

no non-constant positive steady state for the same weakly cou- 

pled reaction-diffusion model. In addition, the asymptotic behavior 

of positive solutions for periodic system was studied by A. Tineo 

[20] and Fu et al. [4] . Y. Du [3] also discussed the existence of pos- 

itive periodic solutions of the corresponding Dirichlet problem by 

using degree and bifurcation theories. 

As for the strongly coupled system of this competitor- 

competitor-mutualist model, there are also some important results. 

When α12 = α13 = α31 = 0 , Chen et al. [2] obtained some exis- 

tence and non-existence results concerning non-constant positive 

steady-states for the Neumann problem by using Leray–Schauder 

degree theory. Recently, under Dirichlet boundary value condi- 

tions, Li et al. [9] discussed the existence of positive solutions 

to a competitor-competitor-mutualist model with another type 

of strongly coupled terms by Schauder fixed point theory. Their 
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results show that the system possesses at least one coexistence 

state if cross-diffusions and cross-reactions are weak. 

The weakly coupled system of (1.1) don’t consider either the 

fact that competitors and mutualist naturally develop strategies 

for survival or the fact that the distribution of population is usu- 

ally not homogeneously. To take into account the intra-specific and 

inter-specific population pressures between two competitors and 

mutualist, we introduce self- and cross-diffusions. The dispersal 

terms can be written as 

div 

{ 

(d 1 + 2 α11 u 1 + α12 u 2 + 

α13 

β + u 3 

) ∇u 1 + α12 u 1 ∇u 2 

+ 

−α13 u 1 

(β + u 3 ) 2 
∇u 3 

} 

, 

div { α21 u 2 ∇u 1 + (d 2 + α21 u 1 + 2 α22 u 2 ) ∇u 2 } , 
div 

{
−α31 u 3 

(γ + u 1 ) 2 
∇u 1 + (d 3 + 

α31 

γ + u 1 

+ 2 α33 u 3 ) ∇u 3 

}
. 

The terms 

d 1 + 2 α11 u 1 + α12 u 2 + 

α13 

β + u 3 

, d 2 + α21 u 1 + 2 α22 u 2 , 

d 3 + 

α31 

γ + u 1 

+ 2 α33 u 3 

represent self-diffusions and the terms 

α12 u 1 , 
−α13 u 1 

(β + u 3 ) 2 
, α21 u 2 , 

−α31 u 3 

(γ + u 1 ) 2 

represent cross-diffusions. Here α12 u 1 > 0 (or α21 u 2 > 0) implies 

that the flux of u 1 (or u 2 ) is directed toward the decreasing pop- 

ulation density of u 2 (or u 1 ), so the two competitors avoid each 

other. While 
−α13 u 1 
(β+ u 3 ) 2 

< 0 (or 
−α31 u 3 
(γ + u 1 ) 2 

< 0 ) implies that the flux of 

u 1 (or u 3 ) is directed toward the increasing population density of 

u 3 (or u 1 ), i.e., the two mutualists chase each other. 

After add these items, model (1.1) means that, in addition to the 

dispersive force, the diffusion also depends on population pressure 

from other species. Thus, the populations in (1.1) are not homo- 

geneously distributed due to the consideration of self- and cross- 

diffusions. 

The roles of diffusion and cross-diffusion in the modeling of 

biological processes have been extensively studied in literature. 

Starting with Turing’s seminal work [21] , diffusion and cross diffu- 

sion have been observed as causes of the spontaneous emergence 

of ordered structures, called patterns, in a variety of nonequi- 

librium situations. Diffusion-driven instability, also called Turing 

instability, has also been verified empirically in some chemical 

and biological models [1,5,19,22] . For some systems with cross- 

diffusion, we can learn that cross-diffusion may be helpful to cre- 

ate linear instability as well as non-constant positive steady-state 

solutions for corresponding ecosystems, for example [10–13,16,18] . 

Recently, Guin [7] investigated a mathematical model of predator- 

prey interaction subject to self and cross-diffusion and found that 

the effects of self-diffusion as well as cross-diffusion play impor- 

tant roles in the stationary pattern formation of the model which 

concerns the influence of intra-species competition among. Hoang 

et al. [8] considered a general n-species reaction-diffusion system. 

Under some assumptions of diffusion and reaction matrices, linear 

instability and dynamical instability for the uniform steady state 

were discussed by linearization and a bootstrap lemma. These re- 

sults show that the cross-diffusion systems are capable of produc- 

ing much more complex dynamics than the corresponding diffu- 

sion system, which can provide theoretical basis for numerical sim- 

ulation of various spatial patterns, such as spotted, spots-stripes 

mixtures, stripe-like, oscillatory patterns, and so on. 

In recent years, researches on the existence of non-constant 

steady states and patterns formation for strongly coupled 

reaction-diffusion systems arising from population dynamics have 

been mainly focused on the models with linear cross-diffusion 

[2,5,12,13,19,22] , and relatively little research has been conducted 

to the mutli-species models with nonlinear cross-diffusion terms 

(for example, [6] and [9] for species coexistence). In our study, 

a reaction-diffusion system of competitor-competitor-mutualist 

model with diffusion, self-diffusion and nonlinear cross-diffusion is 

considered. Our objective is to discuss the roles of diffusion, self- 

diffusion and cross-diffusion in stationary patterns formation for 

model (1.1), (1.2) . We prove that cross-diffusion α12 , α21 or α31 

can destabilize a uniform positive equilibrium which is stable for 

the ODE system and for the weakly coupled reaction-diffusion sys- 

tem. As a result, we find that under certain conditions, the effect of 

cross-diffusion can arouse stationary patterns while diffusion and 

self-diffusion fail to do so. Our results exhibit some interesting 

combining effects of cross-diffusion, competition, mutualism and 

intra-species interactions on the stability and instability of positive 

equilibrium. 

The paper is organized as follows. In Section 2 , the persistent 

property for reaction-diffusion system with no self- and cross- 

diffusion is discussed by using a comparison method. Under the 

same condition on locally stability in [27] , we obtain the glob- 

ally asymptotic stability of the uniform positive steady state for 

weakly coupled reaction diffusion system. In Section 3 , we inves- 

tigate the linear stability of uniform positive steady state for ODEs 

and reaction-diffusion system with no or with one cross-diffusion 

and the effect of cross-diffusion α12 , α21 or α31 on the appearance 

of Turing instability. 

2. Persistence and global asymptotic stability for the PDEs 

without self- and cross-diffusion 

By solving the equations 

a − u 

∗
1 −

δu 

∗
2 

1 + mu 

∗
3 

= 0 , b − u 

∗
2 − ηu 

∗
1 = 0 , c − u 

∗
3 

L 0 + nu 

∗
1 

= 0 , 

it is easy to know that problem (1.1) has a unique positive equilib- 

rium 

u 

∗ = (u 

∗
1 , u 

∗
2 , u 

∗
3 ) 

T = (u 

∗
1 , b − ηu 

∗
1 , c(L 0 + nu 

∗
1 )) 

T . 

if 

a (1 + mcL 0 ) > δb, b > ηu 

∗
1 , (2.1) 

where u ∗
1 

= 

−(1+ mcL 0 −amnc−δη)+ 
√ 

(1+ mcL 0 −amnc−δη) 2 +4(a + amcL 0 −δb) 
2 mnc . 

In this section, we always assume that αi j = 0 . 

We will show that any nonnegative classical solution 

u (x, t) = (u 1 (x, t) , u 2 (x, t) , u 3 (x, t)) T , u i ∈ C 2 , 1 (� × (0 , T )) ∩ C( � ×
(0 , T ))(0 < T < + ∞ ) of (1.1) without self- and cross-diffusion lies 

in a certain bounded region, and even converges to the positive 

equilibrium u 

∗ = (u ∗1 , u 
∗
2 , u 

∗
3 ) 

T as t → + ∞ for all x ∈ �. 

Theorem 2.1. Suppose inequalities 

a (1 + mcL 0 ) > δb, b > ηa (2.2) 

are fulfilled. Then system (1.1) is persistent. 

Proof. The proof is similar to the arguments in Theorem 2.2 of 

[24] . From the maximum principle for parabolic type equation, all 

solutions of (1.1) are nonnegative since the initial value is nonneg- 

ative. From the first equation in (1.1) , we can obtain 

u 1 t − d 1 �u 1 = u 1 (a − u 1 − δu 2 

1 + mu 3 

) ≤ au 1 (1 − u 1 

a 
) . 

Then u 1 ≤ v from the comparison principle for parabolic equation, 

here v is the solution of 

v t − d 1 �v = a v (1 − v 
a 
) , 

∂v 
∂ν

= 0 , v (x, 0) = u 10 (x ) ≥ ( �≡)0 . 
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