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a b s t r a c t 

In this paper, we have investigated the phenomena of Turing pattern formation in a predator-prey model 

with habitat complexity in presence of cross diffusion. Using the linear stability analysis, the conditions 

for the existence of stationary pattern and the existence of Hopf bifurcation are obtained. It is shown 

analytically that the presence of cross diffusion in the system supports the formation of Turing pattern. 

Two parameter bifurcation analysis are done analytically and corresponding bifurcation diagrams are pre- 

sented numerically. A series of simulation results are plotted for different biologically meaningful param- 

eter values. Effects of variation of habitat complexity and the predator mortality rate and birth rate of 

prey on pattern formation are also reported. It is shown that cross-diffusion can lead to a wide variety of 

spatial and spatiotemporal pattern formation. It is found that the model exhibits spot and stripe pattern, 

and coexistence of both spot and strip patterns under the zero flux boundary condition. It is observed 

that cross-diffusion, habitat complexity, birth rate of prey and predator’s mortality rate play a significant 

role in the pattern formation of a distributed population system of predator-prey type. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Predator-prey dynamics have been continuing as one of the 

dominant themes in mathematical ecology since the pioneer work 

of Lotka [1] and Volterra [2] . The main goal of mathematical ecol- 

ogy is to understand the relationship between different species and 

their living environment. The crucial components of a mathemat- 

ical model of the predator prey system are the growth function 

of prey species, the mortality function of predator species and the 

functional response. Several types of functional responses such as 

Holling type I -IV [1–5] , Beddington–Deangelis [6] etc. have been 

used for modeling predator prey systems. The existence of habitat 

complexity in an eco-system reduces the probability of capturing 

a prey by reducing the searching efficiency of predator and habitat 

complexity affects the attack coefficient [7] as a result the func- 

tional response will be modified. Habitat complexity is the struc- 

tural complexity of habitats. Habitat complexity can strongly me- 

diate predator-prey interactions, affecting not only total predation 

rates, but also modifying selectivities for different prey species [8–

11] . Pennings [12] and Grabowski [13] reported that habitat com- 

plexity reduces encounter rates of predators with prey. Aquatic 

habitat becomes structurally complex in presence of submerged 
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vegetation or aquatic weeds. It is observed that structural complex- 

ity of the habitat stabilizes the predator-prey interaction between 

piscivorous perch (predator) and juvenile perch and roach (prey) 

by reducing predator foraging efficiency. Luckinbill prolonged the 

coexistence of Paramecium aurelia (prey) and Didinium nasutum 

(predator) in laboratory system by increasing strength of habitat 

complexity using methyl cellulose in the Cerophyl medium (nutri- 

ent) [14] . Therefore, it is important to incorporate the effect of habi- 

tat complexity in predator-prey functional response for theoretical 

models. 

Reaction-diffusion (RD) systems have attracted increasing at- 

tention from the mathematical biologists in recent years to seek 

insights into the fascinating patterns that occur in living organ- 

isms and in ecological systems. Turing instability constitutes a uni- 

versal paradigm for the spontaneous generation of spatially orga- 

nized patterns. Alan Turing [15] proposed a dynamical mechanism, 

which has been extensively used to explain how Turing patterns 

are formed and is now known as Turing bifurcation or Turing in- 

stability. Turing pointed out that to generate spatial patterns, a re- 

action diffusion system should contain at least two reactive species 

that diffuse at very different rates: one slowly diffusing substance 

and other rapidly diffusing substance. Based on the pioneer work 

of Turing [15] , Segel and Jackson [16] first introduced the reaction 

diffusion system in ecology. Under some ecological settings, diffu- 

sion should be thought of as dispersal of population density and 

often be considered as a stabilizing process, thus it is the diffusion 
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results in spatial patterns [17–20] . Existence of non-Turing shown 

the pattern under the self diffusion was reported [21–23] when 

the homogeneous state is unstable but all those investigations are 

based on the consequence of Turing concept. 

Effects of migration (directed movement) and diffusion (random 

movement) in a predator-prey system with Holling-Tanner form 

was reported by Sun et al. [24] . Recently an epidemic model with 

spatial diffusion is considered by Li [25] to understand the patterns 

in disease spreading. To reveal the relationship between inducible 

defenses and herbivore outbreak, a reaction diffusion model was 

proposed and analyzed by Sun et al. [26] . Periodic solutions in 

a herbivore-plant system with time delay and spatial diffusion 

was first reported by Li et al. [27] . Relationship between pattern 

structures and ecosystems collapse was investigated by Sun et al. 

[28] formulating a reaction diffusion model. 

Systems with cross-diffusion are widespread in nature and 

play an important role, in biophysical and biomedical situations. 

The escaping-chasing phenomena was described of cross-diffusion 

by Kerner (1959) [29] , and first applied in competitive systems 

by Shigesada et al. (1979) [30] . An important example of cross- 

diffusion is chemotaxis, in which a field (e.g., an insect popula- 

tion) diffuses towards regions of high concentrations of another 

field (e.g., a chemically desirable substance). The escaping veloc- 

ity of preys may be considered as dispersive velocity of the preda- 

tors and the chase velocity of predators may be considered as dis- 

persive velocity of prey. The presence of cross-diffusion in reac- 

tion process yields a large variety of pattern-forming instabilities. 

In case of cross-diffusion, the gradient in the concentration of one 

species induces a flux of another species which is very significant 

in generating spatial structures. After worked of Kerner [29] , Shige- 

sada [30] , the study of in ecological models with cross diffusion 

has attracted attention of biologists [31–35] . The resulting govern- 

ing system is a reaction-diffusion equation of the linear form can 

be written in the following form : 

∂ U 

∂t 
= G (U ) + D ∇ 

2 U . 

Where U is the n dimensional vector with components u i ( x, t ), 

(i = 1,2, ���, n) as the species- densities. D is the n × n matrix of the 

diffusion coefficients, where the diagonal elements are called the 

self-diffusion coefficient and the off-diagonal elements are called 

cross-diffusion coefficients, G is the reaction term indicating the 

interaction between the involved species and ∇ 

2 be Laplacian op- 

erator. Recently cross-diffusion driven instabilities have gained a 

considerable attention in population dynamics [32–36] , mainly due 

to their ability to predict some important features in the study of 

the spatial distribution of species in ecological systems [30,37,38] , 

in epidemic system [39] . 

Despite recognition of the significance of habitat complexity in 

community dynamics, current reaction diffusion models of theo- 

retical ecology have rarely considered its effects. In this paper, we 

consider a mathematical model of predator prey system in pres- 

ence of habitat complexity [40] . The effects of cross diffusion term 

together with self diffusion term in the pattern forming instability 

are investigated both analytically and numerically. The effects of 

variation of habitat complexity parameter, birth rate of prey, mor- 

tality rate of predator and cross diffusion term are investigated. 

The goal of this paper is to show that cross-diffusion can drive 

the emergence of Turing pattern and the impact of variation of 

cross-diffusion coefficients in the spatially inhomogeneous distri- 

bution of population density. Our analyze reveal that the cross- 

diffusion may induce spatial patterns and different cross-diffusion 

coefficient may lead to transition between spot and stripe patterns. 

The paper is organized as follows. In Section 2 , we introduce 

a diffusive predator-prey model with habitat complexity in pres- 

ence of the linear cross diffusion term. In Section 3 , the analysis of 

the local model is carried out. In Section 4 , the bifurcation is done. 

The possibility of existence of Turing pattern in presence of cross 

diffusion is shown analytically. The result of Turing pattern for- 

mation through extensive numerical simulations are presented in 

Section 5 . In Section 6 the controllability aspect of spatiotemporal 

pattern are discussed. Finally, conclusions are drawn in Section 7 . 

2. Mathematical model 

Habitat complexity exists in every terrestrial or aquatic ecolog- 

ical systems. In our model, we assume the logistic growth of prey 

linear mortality rate of predator. The existence of habitat complex- 

ity reduces the probability of capturing a prey by reducing the 

searching efficiency of predator and habitat complexity affects the 

attack coefficient [41] . Now following the Jana and Bairagi [40] , Sa- 

hoo and Poria [42] and introducing a dimension less parameter c (0 

< c < 1) that measures the strength of habitat complexity we ob- 

tain the following model, 

dX 

dt 
= RX 

(
1 − X 

K 

)
− A (1 − c) X Y 

B + (1 − c) X 

dY 

dt 
= 

ξA (1 − c) X Y 

B + (1 − c) X 

− δY. (1) 

where X ( t ) and Y ( t ) stand for the prey and predator densities at 

time t, respectively. The parameter R is the growth rate of the prey, 

K is its carrying capacity, ξ is the conversion rate of prey into the 

predator and δ is the death rate of the predator in the absence of 

prey. In absence of habitat complexity, i.e. when c = 0 the system 

(4) becomes the well known Rosenzweig–MacArthur model [43] . 

Now re-defining 

X new 

= 

X old 

K 

, t new 

= R t old , Y new 

= 

AY old 

BR 

the model (1) can be transformed to the following non- 

dimensional form, 

dX 

dt 
= X ( 1 − X ) − X Y 

a + bX 

dY 

dt 
= 

ξX Y 

a + bX 

− δY (2) 

where 

a = 

1 

1 − c 
, ξnew 

= 

AKξold 

BR 

, δnew 

= 

δold 

R 

, b = 

K 

B 

. 

The new parameter a is the new habitat complexity dependent pa- 

rameter and notice that the model has habitat complicity if a > 1 

and in case of no habitat complexity a = 1 . 

In presence of spatial diffusion of species the model (2) takes 

the following form, 

∂X 

∂t 
= X ( 1 − X ) − X Y 

a + bX 

+ D 11 ∇ 

2 X 

∂Y 

∂t 
= 

ξX Y 

a + bX 

− δY + D 22 ∇ 

2 Y. (3) 

where D 11 > 0 and D 22 > 0 are the diffusion coefficients for 

prey and predator respectively and ∇ 

2 = 

∂ 
∂x 2 

+ 

∂ 
∂y 2 

is the Laplacian 

operator. 

We now focus on the following predator-prey model consider- 

ing the presence of linear cross-diffusion in our model : 

∂X 

∂t 
= X ( 1 − X ) − X Y 

a + bX 

+ D 11 ∇ 

2 X + D 12 ∇ 

2 Y 

∂Y 

∂t 
= 

ξX Y 

a + bX 

− δY + D 21 ∇ 

2 X + D 22 ∇ 

2 Y. (4) 

The coefficient D 12 and D 21 are called the cross-diffusion coeffi- 

cient describe the respective population fluxes of preys and preda- 

tors resulting from the presence of the other species, respectively, 
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