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Fractals equipped with intrinsic arithmetic lead to a natural definition of differentiation, integration, and 

complex structure. Applying the formalism to the problem of a Fourier transform on fractals we show 

that the resulting transform has all the required basic properties. As an example we discuss a sawtooth 

signal on the ternary middle-third Cantor set. The formalism works also for fractals that are not self- 

similar. 
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1. Introduction 

While trying to formulate quantum mechanics on fractal back- 

grounds, one immediately faces the problem of momentum rep- 

resentation. The issue is nontrivial and reduces to the question of 

what should be meant by a Fourier transform on a fractal. Histori- 

cally the first approach to fractal harmonic analysis can be, implic- 

itly, traced back to studies of diffusion on fractals [1,2] . A generator 

of the diffusion is then a candidate for a Laplacion on a fractal, and 

once we have a Laplacian we can look for its eigenfunctions. The 

eigenfunctions may play a role of a Schauder basis in certain func- 

tion spaces, and thus lead to a sort of signal analysis on a fractal. 

Whether and under what conditions the resulting eigenfunction 

expansions can be regarded as analogs of Fourier transformations 

is a separate story. Fractals such as Cantor sets naturally lead to 

wavelet transforms (the Haar basis [3–5] , for example), but quan- 

tum mechanical momentum representation is expected to be as- 

sociated with gradient operators, and there is no obvious link be- 

tween Haar wavelets and gradients. 

Gradients and Laplacians can be defined on fractals also more 

directly. Here one should mention the approaches that begin 

with Dirichlet forms defined on certain self-similar fractals, and 

those that start with discrete Laplacians [6–9] . Self-similarity is 

an important technical assumption, and it is not clear what to 

do in more realistic cases, such as multi-fractals or fractals that 

have no self-similarity at all (a generic case in natural systems). 
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Four different definitions of a gradient (due to Kusuoka, Kigami, 

Strichartz and Teplyaev) can be found in [10] . 

One might naively expect that it would be more logical to be- 

gin with first derivatives and only then turn to higher-order op- 

erators, such as Laplacians. It turns out that Laplacians defined in 

the above ways cannot be regarded as second-order operators. Still, 

an approach where Laplacians are indeed second-order is possi- 

ble and was introduced by Fujita [11,12] , and further developed by 

Freiberg, Zähle and others [13–17] . We will later see that a non- 

Diophantine Laplacian is exactly second-order and, similarly to the 

approach from [13–17] , is based on derivatives and integrals satis- 

fying the fundamental laws of calculus. 

In yet another traditional approach to harmonic analysis on 

fractals, one begins with self-similar fractal measures, and then 

seeks exponential functions that are orthogonal and complete with 

respect to them. The classic result of Jorgensen and Pedersen 

[18] states that such exponential functions do exist on certain frac- 

tals, such as the quaternary Cantor set, but cannot be constructed 

in the important case of the ternary middle-third Cantor set. 

In the present paper, we will follow a different approach. 

One begins with arithmetic operations (addition, subtraction, 

multiplication, and division) which are intrinsic to the fractal. The 

arithmetic so defined is non-Diophantine in the sense of Burgin 

[19,20] . An important step is then to switch from arithmetic to 

calculus [21] where, in particular, derivatives and integrals are 

naturally defined. The resulting formalism is simple and general, 

extends beyond fractal applications, but works with no difficulty 

for Cantorian fractals, even if they are not self-similar [21,22] . 

Actually, a straightforward motivation for the present paper 

came from discussions with the referee of [22] , who pointed out 
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possible difficulties with momentum representation of quantum 

mechanics on Cantorian space-times. In the sequel to the present 

paper [27] , we show how to generalize the construction to fractals 

of a Sierpi ́nski type. 

In Section 2 we recall the basic properties of non-Diophantine 

arithmetic, illustrated by four examples from physics, cognitive sci- 

ence, and fractal theory. Section 3 is devoted to complex numbers, 

discussed along the lines proposed by one of us in [21] , and with 

particular emphasis on trigonometric and exponential functions. In 

Section 4 we recall the non-Diophantine-arithmetic definitions of 

derivatives and integrals. Section 5 discusses a scalar product of 

functions, and the corresponding Fourier transform (both complex 

and real) is introduced in Section 7 . In Section 8 we discuss an 

explicit example of a sawtooth signal with Cantorian domain and 

range. Finally, in Section 9 we briefly discuss the issue of spectrum 

of Fourier frequencies, and compare our results with those from 

[18] . 

2. Generalized arithmetic: Fractal and not only 

Consider a set X and a bijection f : X → R Following the gen- 

eral formalism from [21] we define the arithmetic operations in 

X , 

x � y = f −1 
(

f (x ) + f (y ) 
)
, 

x � y = f −1 
(

f (x ) − f (y ) 
)
, 

x � y = f −1 
(

f (x ) f (y ) 
)
, 

x � y = f −1 
(

f (x ) / f (y ) 
)
, 

for any x, y ∈ X . In later applications we will basically concen- 

trate on an appropriately constructed fractal X , but the results are 

more general. This is an example of a non-Diophantine arithmetic 

[19,20] . 

One verifies the standard properties: (1) associativity (x � y ) �

z = x � (y � z) , (x � y ) � z = x � (y � z) , (2) commutativity x � y = 

y � x, x � y = y � x, (3) distributivity (x � y ) � z = (x � z) � (y �

z) . Elements 0 ′ , 1 ′ ∈ X are defined by 0 ′ � x = x, 1 ′ � x = x, which 

implies f (0 ′ ) = 0 , f (1 ′ ) = 1 . One further finds x � x = 0 ′ , x � x = 

1 ′ , as expected. A negative of x ∈ X is defined as �x = 0 ′ � x = 

f −1 
(

− f (x ) 
)
, i.e. f (�x ) = − f (x ) and f (�1 ′ ) = − f (1 ′ ) = −1 , i.e. 

�1 ′ = f −1 (−1) . Notice that 

(�1 

′ ) � (�1 

′ ) = f −1 
(

f (�1 

′ ) 2 
)

= f −1 (1) = 1 

′ . (1) 

Multiplication can be regarded as repeated addition in the follow- 

ing sense. Let n ∈ N and n ′ = f −1 (n ) ∈ X . Then 

n 

′ 
� m 

′ = (n + m ) ′ , (2) 

n 

′ 
� m 

′ = (nm ) ′ (3) 

= m 

′ 
� · · · � m 

′ ︸ ︷︷ ︸ 
n times 

. (4) 

In particular n ′ = 1 ′ � · · · � 1 ′ ( n times). 

A power function A (x ) = x � · · · � x ( n times) will be denoted 

by x n 
′ 
. Such a notation is consistent in the sense that 

x n 
′ 
� x m 

′ = x (n + m ) ′ = x n 
′ �m 

′ 
. (5) 

Before we plunge into fractal applications let us consider four ex- 

plicit examples of non-Diophantine arithmetic. 

2.1. Benioff’s number scaling 

The number-scaling approach of Benioff [23,24] can be regarded 

as a particular case of the above formalism with f (x ) = px, p � = 0. 

Indeed, x � y = (1 /p)(pxpy ) = pxy, x � y = (1 /p)(px + py ) = x + y, 

x � y = (1 /p)(px ) / (py ) = x/ (py ) , but f (1 /p) = 1 . Since (1 /p) � x = 

(1 /p) 
(

p(1 /p) px 
)

= x one infers that 1 ′ = f −1 (1) = 1 /p is the unit 

element of multiplication in Benioff’s non-Diophantine arithmetic. 

2.2. Fechner map 

This arithmetic is implicitly used in cognitive science [25] . It oc- 

curs as a solution of the following Weber–Fechner problem [26] : 

Find a generalized arithmetic such that (x + kx ) � x is indepen- 

dent of x . Here x �→ x ′ = x + �x is the change of an input sig- 

nal, while x ′ �x is the change of x as perceived by a nervous 

system. Experiments show that �x/x ≈ k = const (Weber-Fechner 

law) in a wide range of x s, and with different values of k for dif- 

ferent types of stimuli. The corresponding arithmetic is defined 

by the ‘Fechner map’ f (x ) = a ln x + b, f −1 (x ) = e (x −b) /a , and thus 

0 ′ = f −1 (0) = e −b/a , 1 ′ = f −1 (1) = e (1 −b) /a . Clearly, 0 ′ � = 0 and 1 ′ � = 

1. Interestingly, the Fechnerian negative of x ∈ R + reads 

�x = 0 

′ 
� x = e −2 b/a /x ∈ R + , (6) 

but nevertheless does satisfy 

�x � x = e −b/a = 0 

′ , (7) 

as it should on general grounds [25] . So, numbers that are negative 

with respect to one arithmetic are positive with respect to another. 

In a future work we will show that Fechner’s f has intriguing con- 

sequences for relativistic physics. 

2.3. Ternary Cantor line 

Let us start with the right-open interval [0 , 1) ⊂ R , and let 

the (countable) set Y 2 ⊂ [0 , 1) consist of those numbers that 

have two different binary representations. Denote by 0 .t 1 t 2 . . . 

a ternary representation of some x ∈ [0, 1). If y ∈ Y 1 = 

[0 , 1) \ Y 2 then y has a unique binary representation, say y = 

0 .b 1 b 2 . . . . One then sets g ±(y ) = 0 .t 1 t 2 . . . , t j = 2 b j . The in- 

dex ± appears for the following reason. Let y = 0 .b 1 b 2 · · · = 

0 .b ′ 
1 
b ′ 

2 
. . . be the two representations of y ∈ Y 2 . There are two op- 

tions, so we define: g −(y ) = min { 0 .t 1 t 2 . . . , 0 .t ′ 1 t ′ 2 . . . } and g + (y ) = 

max { 0 .t 1 t 2 . . . , 0 .t ′ 1 t ′ 2 . . . } , where t j = 2 b j , t 
′ 
j 
= 2 b ′ 

j 
. We have there- 

fore constructed two injective maps g ±: [0, 1) → [0, 1). The ternary 

Cantor-like sets are defined as the images C ±(0 , 1) = g ±
(
[0 , 1) 

)
, 

and f ±: C ±(0, 1) → [0, 1), f ± = g −1 
± , is a bijection between C ±(0, 1) 

and the interval. For example, 1 / 2 ∈ Y 2 since 1 / 2 = 0 . 1 2 = 0 . 0(1) 2 . 

We find 

g −(1 / 2) = min { 0 . 2 3 = 2 / 3 , 0 . 0(2) 3 = 1 / 3 } = 1 / 3 , (8) 

g + (1 / 2) = max { 0 . 2 3 = 2 / 3 , 0 . 0(2) 3 = 1 / 3 } = 2 / 3 . (9) 

Accordingly, 1 / 3 ∈ C −(0 , 1) while 2 / 3 / ∈ C −(0 , 1) . And vice versa, 

1 / 3 / ∈ C + (0 , 1) , 2 / 3 ∈ C + (0 , 1) . The standard Cantor set is the sum 

˜ C = C −(0 , 1) ∪ C + (0 , 1) . All irrational elements of ˜ C belong to C ±(0, 

1) (an irrational number has a unique binary form), so ˜ C and C ±(0, 

1) differ on a countable set. Notice further that 0 ∈ C ±(0, 1), with 

f ±(0) = 0 . In [21,22] we worked with C −(0 , 1) so let us concentrate 

on this case. Let C −(k, k + 1) , k ∈ Z , be the copy of C −(0 , 1) but 

shifted by k . We construct a fractal X = ∪ k ∈ Z C −(k, k + 1) , and the 

bijection f : X → R . Explicitly, if x ∈ C −(0 , 1) , then x + k ∈ C −(k, k + 

1) , and f (x + k ) = f (x ) + k by definition. In [21,22] the set X is 

termed the Cantor line, and f is the Cantor-line function. For more 

details see [21] . The set X ∩ [ k, k + 1) is self-similar, but X as a 

whole is not-self similar. Fig. 1 (upper) shows the plot of g = f −1 . 

For completely irregular generalizations of the Cantor line, see [22] . 

Let us make a remark that in the literature one typically con- 

siders Cantor sets ˜ C so that the resulting function g : ˜ C → [0 , 1) is 

non invertible on a countable subset. In [3] one employs the map 
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