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In this paper, we propose and analyse two type host–parasitoid models with integrated pest manage- 

ment (IPM) interventions as impulsive control strategies. For fixed pulsed model, the threshold condition 

for the global stability of the host-eradication periodic solution is provided, and the effects of key pa- 

rameters including the impulsive period, proportionate killing rate, instantaneous search rate, releasing 

constant, survival rate and the proportionate release rate on the threshold condition are discussed. Then 

latin hypercube sampling /partial rank correlation coefficients are used to carry out sensitivity analyses to 

determine the significance of each parameters. Further, bifurcation analyses are presented and the results 

show that coexistence of attractors existed for a wide range of parameters, and the switch-like transi- 

tions among these attractors indicate that varying dosages and frequencies of insecticide applications and 

numbers of parasitoid released are crucial for IPM strategy. For unfixed pulsed model, the results show 

that this model exists very complex dynamics and the host population can be controlled below ET, and 

it implies that the modelling methods are helpful for improving optimal strategies to design appropriate 

IPM. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Integrated pest management (IPM), usually consists of biolog- 

ical, cultural, chemical control tactics or their combinations, is a 

long-term control strategy with aim of reducing pest populations 

to tolerable levels acceptable to the public [1–3] . It is confirmed 

by experimental results that IPM is more effective than a single 

control strategy [4–6] . In order to show how IPM strategy can be 

realized, two important concepts containing economic injury level 

(EIL) and economic threshold (ET) are introduced (for details see 

[1] ). 

In a natural world, the major impediments in pest control for 

agricultural scientists include (a) how to determine the dosage, pe- 

riod and frequency of IPM applications? (b) when should be an 

IPM strategy applied in order to prevent the pest population reach- 

ing EIL? (c) what is the optimal control strategy for pest control? 

To answer these questions, mathematical modelling plays a key 

role enable us to estimate and predict population densities, which 

would tell us when ET can be reached for pest populations and an 

IPM strategy should be applied immediately [7–9] . Based on these 

purposes, numerous of research papers with IPM have appeared 
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on this topic, most of which have focused on developing and in- 

vestigating continuous predator-prey models concerning impulsive 

control strategy [10–17] . From biological significance, the results 

obtained from these studies show that dosages and frequencies of 

insecticide applications and timing of natural enemy released can 

be determined which are benefit for designing pest control tactics. 

However, a common feature among many insect species is that 

they have no overlap between successive generations and so their 

population evolves in discrete generations. In this case, mathemati- 

cal modelling of discrete host–parasitoid models, which are usually 

described by difference equations, are being used to investigate the 

population dynamics of a species more realistic rather than those 

of continuous-time models [18–23] . Note that the parasitoid inter- 

generational survival rate which is affected by several different fac- 

tors has never been modelled explicitly, these factors often include 

immigration from outside the local area, parasitoid overwintering 

survival and parasitism of an alternate insect pest, etc, [24–27] . 

With this scenario the discrete host–parasitoid models with IPM 

strategies were firstly proposed and analysed by Tang [28] . In par- 

ticular, the classical Nicholson–Bailey models incorporating para- 

sitoid intergenerational survival rate with impulsive control strate- 

gies were considered based on the assumption that the host pop- 

ulation would grow infinity. However, in reality the host popula- 

tion cannot growth toward infinity because of resource limitation, 

http://dx.doi.org/10.1016/j.chaos.2016.07.006 

0960-0779/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.chaos.2016.07.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.07.006&domain=pdf
mailto:seehom@126.com
http://dx.doi.org/10.1016/j.chaos.2016.07.006


J. Yang et al. / Chaos, Solitons and Fractals 91 (2016) 522–532 523 

predation and intra-specific competition, etc. This indicates that 

the carrying capacity of the host population should be taken into 

account. 

The main purpose of the present paper is to investigate the dy- 

namics of Holling type II host-parasitoid models concerning car- 

rying capacity with IPM strategies. Firstly, we propose a Holling 

type II host–parasitoid model with IPM applied at different fixed 

periods. The threshold condition for the stability of the host- 

eradication periodic solution is provided, then sensitivity analyses 

are carried out to determine the significance of each parameters. 

The results show that the dynamics of the proposed model with 

fixed moments are very complex including period-doubling bifur- 

cation, period-halving bifurcation, chaotic crisis and so on. Coexist 

attractors are also detected and have been confirmed by basins of 

attraction, it indicates that the final state of the host population 

depends on its initial conditions. In addition, the switch-like be- 

haviour is also observed under small random perturbations. 

In practice, it suggests that an IPM strategy should only be ap- 

plied once the states of the model reach a prescribed given thresh- 

old. Based on this ideal, we propose and analyse a Holling type 

II host–parasitoid model with state-dependent feedback control. 

Compared to the model with fixed moments, it is pointed out 

that the required dosages and frequencies of insecticide applica- 

tions are reduced if the density of the host population is only kept 

below ET rather than being eradicated. Further, bifurcation analy- 

ses show that this model exhibits very rich dynamical behaviour 

including period-adding bifurcation, period-decreasing bifurcation, 

coexistence of attractors, etc. The results reveal that the host popu- 

lation can be controlled below ET, and the modelling methods can 

help us to improve optimal strategies in the design of appropriate 

IPM strategies. 

2. Holling type II host–parasitoid model with impulsive effects 

2.1. Model formation 

Recently, the classic Nicholson–Bailey models with impulsive 

control strategies have been proposed and analysed [28] , and we 

note that the solutions of the Nicholson–Bailey model may tend to 

infinity. However, in a natural world, it is more reasonable for the 

pest population to tend to carrying capacity rather than infinity 

due to resource limitation, predation, or other intervention mech- 

anisms. This implies that the host–parasitoid models involving car- 

rying capacity will provide a more natural description for mathe- 

matical modelling of real world phenomenon. These assumptions 

result in the following Holling type II functional response host–

parasitoid model [29] : ⎧ ⎪ ⎨ 

⎪ ⎩ 

H n +1 = H n exp 

[ 
r 

(
1 − H n 

K 

)
− aT P n 

1 + aT h H n 

] 
, 

P n +1 = H n 

[ 
1 − exp 

(
− aT P n 

1 + aT h H n 

)] 
+ λP n . 

(1) 

where H n and P n are the density of hosts and parasitoids in gener- 

ation n (n = 0 , 1 , 2 , . . . ) . r is the intrinsic growth rate of the host 

population without parasitoids, K is the carrying capacity, a de- 

notes the instantaneous search rate, T is the total time initially 

available for search, i.e., the total time the hosts are exposed to 

parasitoids, T h is the handling time, i.e., the time between host be- 

ing encountered and search being resumed. λ ≥ 0 is the density- 

independent survival of the parasitoid at generation n which rep- 

resents immigration from outside the local area, releases of bio- 

logical control agents, and increased growth rate of the parasitoid 

caused by parasitism of an alternate insect pest [24–27] . 

In order to investigate the dynamics of system (1) with IPM 

strategies, we extend system (1) by introducing periodic control 

strategies such as periodic releasing natural enemies and spraying 

pesticide at a fixed period. Note that impulsive reduction of the 

pest population is possible by trapping the pests and/or by poi- 

soning them with chemicals, while impulsive increase of the para- 

sitoid population can be achieved by releasing natural enemies into 

the field [28] . These modifications lead to the following Holling 

type II functional response host–parasitoid model with IPM control 

strategies: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

H n +1 = H n exp 

[ 
r 

(
1 − H n 

K 

)
− aT P n 

1 + aT h H n 

] 
, 

P n +1 = H n 

[ 
1 − exp 

(
− aT P n 

1 + aT h H n 

)] 
+ λP n , 

⎫ ⎪ ⎬ 

⎪ ⎭ 

n = 0 , 1 , 2 , . . . , 

H qk + = (1 − q 1 ) H qk , 

P qk + = (1 + q 2 ) P qk + τ, 

}
k = 1 , 2 , . . . , 

(2) 

where q is a positive integer and denotes the period of the impul- 

sive effect, and it indicates that control tactics should be applied 

when n is an integer multiple of q. q 1 is the killing rate due to 

applications of insecticide, q 2 is a proportion representing the re- 

leasing rate of the parasitoid at generation qk , and τ is a releas- 

ing constant which does not depend on the density of parasitoids. 

Moreover, H qk and P qk are the densities of the host and parasitoid 

at generation qk before the impulsive effects, while H qk + and P qk + 
denote the densities of the host and parasitoid at generation qk af- 

ter the impulsive effects. For convenience, the initial conditions are 

denoted as (H 

+ 
0 

, P + 
0 

) = (H 0 , P 0 ) and the initial densities are taken 

after an impulsive effect. It is noted that a very special case of sys- 

tem (2) was studied by Tang et al. [28] , who did not consider the 

effects of carrying capacity and Holling type II functional response. 

2.2. Host-eradication periodic solution and sensitivity analysis 

In order to investigate the existence and stability of host- 

eradication periodic solution of system (2) , we first consider the 

following subsystem: { 

P n +1 = λP n , n = 0 , 1 , 2 , . . . , 

P qk + = (1 + q 2 ) P qk + τ, k = 1 , 2 , . . . , 

P 0 + = P 0 . 
(3) 

Note that system (3) is a periodic system, so the solution P n can 

be defined at impulsive subinterval n ∈ [ qm 

+ , q (m + 1)) with m = 

0 , 1 , 2 , . . . , and in this interval n = qm 

+ implies that after an im- 

pulsive effect the density of parasitoids is taken as the initial value. 

From system (3) , there exists a periodic solution over the in- 

terval [ qm 

+ , q (m + 1)) , and the complete expression for the host- 

eradication periodic solution of system (2) can be got as follows 

(0 , P ∗n ) = (0 , λn −qm ˆ P ) = 

(
0 , 

τλn −qm 

(1 − (1 + q 2 ) λq ) 

)
, (4) 

where 1 − (1 + q 2 ) λ
q > 0 . 

The solution of system (3) enjoys the following property. 

Lemma 1. If 1 − (1 + q 2 ) λ
q > 0 holds, then system (3) has a positive 

periodic solution P ∗n and for every solution P n of (3) we have | P n −
P ∗n | → 0 as n → ∞ . 

Theorem 2. Let ( H n , P n ) be any solution of system (2) . Then the host- 

eradication periodic solution (0 , P ∗n ) is globally asymptotically stable 

in the first quadrant provided that 

rq < ln 

(
1 

1 − q 1 

)
+ 

aT τ (1 − λq ) 

(1 − (1 + q 2 ) λq )(1 − λ) 
. (5) 

The proof of Theorem 2 is similar to that shown in [28] and we 

omit it. 
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