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The transition of laterally heated flows in a vertical layer and in the presence of a streamwise pressure 

gradient is examined numerically for the case of different values Prandtl number. The stability analysis of 

the basic flow for the pure hydrodynamic case ( Pr = 0 ) was reported in [1]. We find that in the absence of 

transverse pumping the previously known critical parameters are recovered [2], while as the strength of 

the Poiseuille flow component is increased the convective motion is delayed considerably. Following the 

linear stability analysis for the vertical channel flow our attention is focused on a study of the finite am- 

plitude secondary travelling-wave (TW) solutions that develop from the perturbations of the transverse 

roll type imposed on the basic flow and temperature profiles. The linear stability of the secondary TWs 

against three-dimensional perturbations is also examined and it is shown that the bifurcating tertiary 

flows are phase-locked to the secondary TWs. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction and motivation 

Theoretical investigations aided by the advance of powerful 

hardware and parallel experimental studies of the stability of plane 

parallel shear flows have provided significant insights in identify- 

ing the mechanisms of instability and transition from the laminar 

to the turbulent state of shear fluid flow, via the approach based 

on the sequence of bifurcations. Parallel shear flows include the 

well studied plane Couette flow, plane Poiseuille flow (PPF), homo- 

geneously heated flow, laterally heated flow (LHF) and Rayleigh–

Bénard (natural) convection. In [2] the parallel shear flow LHF 

was studied for the case of P r = 0 without the imposition of a 

constant pressure gradient was presented. In [1] the linear sta- 

bility for the P r = 0 case was examined for a wide range of the 

Grashof and Reynolds numbers in order to extract only the fluid 

dynamic instability mechanisms. The present work complements 

and extends the work of [1] by examining the nonlinear flow that 

emerges at the stability boundary of the basic flow configuration. 

The general form of the Navier–Stokes equations can be expressed 

by ∂ �
∂ t 

= M ( R ) � + N ( �, �) . In this set of coupled partial differen- 

tial equations, � describes the state of the system, M( R ) is a linear 

and N ( ·, ·) is a nonlinear operator that involve partial derivatives. 
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R represents collectively the parameters of the system, such as the 

angle of inclination of the channel flow, the Prandtl, the Rayleigh 

(or Grashof), the Reynolds and the wave numbers. In our sequen- 

tial bifurcation approach we first obtain the stability of the basic 

state �0 , which satisfies: 

0 = M ( R ) �0 + N ( �0 , �0 ) , 

via the introduction of infinitesimal disturbances, ˜ � and by ignor- 

ing the nonlinear terms: 

∂ ̃  �0 

∂t 
= M ( R ) ̃  �0 + N ( �0 , ̃

 �0 ) + N ( ̃  �0 , �0 ) . (1) 

The nonlinear states grow from the stability boundary of the basic 

state, that is typically characterised by f 0 ( R ) = 0 , where f 0 is the 

neutral surface of the basic state in parameter space R . If we repeat 

the aforementioned procedure of perturbation on the obtained 

nonlinear states, we could find a f i ( R ) = 0 , where f i , i = ( 1 , 2 , . . . ) , 

is the corresponding neutral surface of the nonlinear state, thus 

defining a successive sequence of bifurcations for the higher order 

states en route to turbulence. 

Motivated by the desire to understand the transition from lam- 

inar flow to the turbulent state for this (mixed convection) prob- 

lem, we revisited the pure hydrodynamic case, first studied in 

[1] through to tertiary level, and also extended it to the case 

P r = 0 . 71 . In the following section we formulate the problem 

and in Section 3 we show the numerical method that we em- 

ploy to investigate the linear stability of our basic steady state. 

http://dx.doi.org/10.1016/j.chaos.2016.07.012 

0960-0779/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.chaos.2016.07.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.07.012&domain=pdf
mailto:s.c.generalis@aston.ac.uk
http://dx.doi.org/10.1016/j.chaos.2016.07.012


534 T. Akinaga et al. / Chaos, Solitons and Fractals 91 (2016) 533–543 

Fig. 1. Geometrical configuration of the problem. In this figure −d ≤ z ≤ d. 

In Section 4 we study the nonlinear states that are generated 

at the stability boundary of the basic state of our problem. In 

Section 5 we study the stability of the bifurcated secondary flow 

and we therefore found the manifold of points where the tertiary 

states are generated. In Section 6 we provide our conclusions and 

we identify avenues for future research. 

2. Mathematical formulation and primary stability 

We consider an incompressible Boussinesq Newtonian fluid 

bounded by two vertical parallel plates of infinite extent with dif- 

ferent temperatures T 0 + �T and T 0 − �T , subject to a pressure 

gradient deviation from the hydrostatic pressure, see Fig. 1 . The 

origin of the Cartesian coordinates system is positioned in the mid- 

plane of the fluid layer of width 2 d , taking x , y , z coordinates as the 

streamwise, spanwise and wall normal directions with unit vectors 

i , j , k . We assume here the state satisfies the periodic boundary 

conditions with wave numbers α and β for the x and y directions, 

respectively. For the non-dimensional form of the velocity vector, 

the temperature and pressure deviations from the basic state as u , 

θ and π , we obtain the non-dimensional form of the equations of 

motion in the following form: 

∂ 

∂t 
u + u · ∇u = −∇ � + θ i + ∇ 

2 
u , (2) 

∂ 

∂t 
θ + u · ∇ θ = P r −1 ∇ 

2 θ, (3) 

∇ · u = 0 . (4) 

The Boussinesq approximation is used in that the material 

properties are assumed to be constant except for the linear tem- 

perature dependence of the density, which has been taken into ac- 

count in the buyoancy term only. The physical properties of the 

system are characterised by the three non-dimensional parameters 

Gr = gγ�T d 3 /ν2 , the Grashof number that gives the strength of 

the heating, R = U m ax d/ν, the Reynolds number that measures the 

strength of the applied pressure gradient in the streamwise direc- 

tion ( U m ax is the speed of Poiseuille laminar flow at the origin of 

the coordinate system) and the Prandtl number P r = ν/κ . Here κ is 

the thermal diffusivity, ν is the kinematic viscosity, γ is the coeffi- 

cient of thermal expansion and g is the acceleration due to gravity. 

For the non-dimensional description of the problem we employ d , 

d 2 / ν and �T / PrGr , as the units of length, time and temperature, 

respectively. Eqs. (2 –4) are supplemented by the boundary condi- 

tions: 

u = θ = 0 at z = ±1 . (5) 

The basic flows are given by: 

U b (z) = −Gr 

6 

(z 3 − z) + Re (1 − z 2 ) , T b (z) = Gr z for | z| ≤ 1 . 

(6) 

In order to be able to identify other, than the laminar, solutions for 

Eqs. (2 –4) it is convenient to introduce a general representation for 

solenoidal vector fields [3] and to write: 

u = Ǔ i + ∇ × ( ∇ × φk ) + ∇ × ψ k (7) 

where the poloidal and toroidal potentials, φ, ψ , respectively, are 

uniquely defined if their averages over the planes z = constant 

vanishes. The mean flow and mean temperature Ǔ , Ť , respectively, 

are given by: 

∂ 2 z Ǔ + Ť + ∂ z �2 φ(∂ x ∂ z φ + ∂ y ψ) = ∂ t ̌U , (8) 

∂ 2 z Ť + P r∂ z �2 φθ = P r∂ t ̌T , (9) 

where the overbar denotes an average over the planes z = 

c onstant(s ) , and �2 denotes the two dimensional Laplacian, �2 = 

∂ 2 /∂ x 2 + ∂ 2 /∂ y 2 . Since we anticipate a vanishing mean flow in the 

y -direction, we have neglected it in expression (7) . Eqs. (8) and 

(9) have been obtained by taking the x , y -average of Eqs. (2) and 

(3) and by subtracting the basic solution U 0 i . In order to obtain 

transverse vortices we use the Fourier expansions for the variables 

( φ, ψ , θ ) in � = ( u , θ ) = (u, v , w, θ ) , see also [2,6–8] : 

φ(x, y, z, t) = 

N ∑ 

n =0 

M ∑ 

m = −M 

L ∑ 

l= −L 

(m,l) � =(0 , 0) 

a nml 

(
1 − z 2 

)2 
T n (z) 

× exp ( i m α( x − ct) + i l βy ) , 

θ (x, z, t) = 

N ∑ 

n =0 

M ∑ 

m = −M 

L ∑ 

l= −L 

(m,l) � =(0 , 0) 

b nml 

(
1 − z 2 

)
T n (z) 

× exp ( i m α( x − ct) + i l βy ) , (10) 

while we write: 

Ǔ = 

N ∑ 

n =0 

C n (1 − z 2 ) T n (z) , Ť = 

N ∑ 

n =0 

D n (1 − z 2 ) T n (z) , (11) 

where N, M and L are the truncation levels for the complex co- 

efficients a nml , and T n ( z ) is the n th order Chebyschev polynomial 

( Fig. 6 ). We have incorporated the phase velocity c in the expan- 

sion, so that calculations can be performed on a moving frame that 

is phase locked with the nonlinear solutions bifurcating from the 

neutral curve boundaries. The factor (1 − z 2 ) 2 has been inserted 

in the expression for ψ in order to take into account the bound- 

ary conditions expressed by Eq. (5) . By substituting the expansions 

(10) into the streamwise projection of the curl and double curl of 

(2) , rewriting (3) using (7) , and finally multiplying the resulting 

equations by 
∫ 2 π/α

0 dx exp i l α x , l = 1 , 2 , . . . , we can evaluate the 

expansions (10) at each collocation point, i.e. we obtain a set of 

nonlinear algebraic equations for the complex coefficients a nm 

. Fur- 

ther details of the numerical method employed here to obtain non- 

linear solutions have been presented recently in [6] and [7,8] in re- 

lation to different types of shear flows. We elaborate on the results 

of our simulations in the next section. For the numerical solution 

of the resulting systems of equations a truncation scheme must be 

introduced. The boundaries of Fig. 2 and the numerical values of 

Table 1 are obtained by setting m = 1 , l = 0 in Eq. (10) and by 
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