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a b s t r a c t 
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1. Introduction 

Fractional differential equations arise in a variety of different ar- 

eas such as rheology, fluid flows, electrical networks, viscoelastic- 

ity, chemical physics, etc. We refer the reader to the monographs 

[3,6–8] for the theory and applications of fractional calculus. There 

are many results for the study of fractional boundary value prob- 

lems, see [1,2,4,9,11] . In [11] , Zou and Cui investigated the existence 

of solutions for the problem 

D 

α
0 + u (t) = f (t , u (t ) , D 

α−1 
0 + u (t ) , D 

α−2 
0 + u (t )) , a . e . t ∈ [0 , 1] , (1) 

I 3 −α
0 + u (0) = 0 , �1 [ D 

α−1 
0 + u (t)] = �2 [ D 

α−2 
0 + u (t)] = 0 , (2) 

where 2 < α < 3, �1 , �2 : C[0 , 1] → R are continuous linear func- 

tionals. The authors considered the following sets of functional 

conditions: 

( A 1 ) �1 (1) �2 (1) � = 0; 

( A 2 ) �1 (1) = �2 (t) = 0 , �2 (1) � = 0; 

( A 3 ) �1 (1) = �2 (1) = 0 , �2 ( t ) � = 0; 

( A 4 ) �1 (1) � = 0, �2 (1) = �2 (t) = 0 ; 

( A 5 ) �1 (1) = �2 (1) = �2 (t) = 0 . 
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The assumption ( A 1 ) corresponds to the non-resonance. The 

condition ( A 2 ) defines a resonance with Ker L = { at α−1 : a ∈ R } , and 

the conditions ( A 3 ) and ( A 4 ) are responsible for a resonance with 

Ker L = { at α−2 : a ∈ R } . Finally, if ( A 5 ) holds, then Ker L = { at α−2 + 

bt α−1 : a, b ∈ R } . 
The results of [11] are obtained along the lines of [10] . 

However, the condition 

�1 (1) = 0 , �2 (1) , �2 (t) � = 0 (3) 

was not considered in which case Ker L = { a (�2 (1) t α−1 − (α −
1)�2 (t ) t α−2 ) : a ∈ R } . The existence theorems obtained in [11] do 

not apply to this important case. 

In our paper, we prefer to consider a slightly different problem. 

Namely, we study 

D 

α
0 + u (t) = f 

(
t, u (t) , D 

α−2 
0 + u (t) , D 

α−1 
0 + u (t) 

)
, t ∈ (0 , 1) , (4) 

u (0) = 0 , B 1 (u ) = B 2 (u ) = 0 , (5) 

of fractional order 2 < α < 3. 

The outline of our paper is as follows. Firstly, we introduce the 

essentials of the Riemann-Liouville fractional integral and deriva- 

tive as well as the coincidence degree theorem of Mawhin. In 

Section 1 , the also formulate the abstract problem Lu = Nu and, in 

Section 2 , we state and prove the existence criteria. Throughout 

the paper, the reader may find a few remarks in which we point 
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out the improvements and contributions to the method of the co- 

incidence degree theory for fractional boundary value problems in 

general and, in particular, the extensions of [11] . 

The left side of (4) is the Riemann-Liouville fractional derivative 

defined in the general form and in terms of the Riemann-Liouville 

fractional integral by 

D 

κ
0+ u = 

d n 

dt n 
1 

�(n − κ) 

∫ t 

0 

(t − s ) n −κ−1 u (s ) d s = 

d n 

d t n 
I n −κ

0+ u (t) , 

where κ > 0, n = [ κ] + 1 . The most important relations are the “in- 

version” properties, which the next two theorems (see, e. g. [8] ) 

supply: 

Theorem 1.1. 

(a) The equality D 

κ
0+ I 

κ
0+ y = y holds for every κ > 0 and y ∈ L 1 (0, 

1) ; 

(b) For u ∈ L 1 (0, 1), n = [ κ] + 1 , if I n −κ
0+ u ∈ AC n −1 [0 , 1] , then 

I κ0+ D 

κ
0+ u (t) = u (t) −

n −1 ∑ 

k =0 

t κ−k −1 

�(κ − k ) 

(
d n −k −1 

dt n −k −1 
I n −κ

0+ u 

)
(0) . 

For ρ < 0, we introduce the notation I ρ
0+ = D 

−ρ
0+ . 

Theorem 1.2. If β, ρ + β > 0 and y ∈ L 1 (0, 1), then the equality 

I ρ
0+ I 

β
0+ y = I ρ+ β

0+ y 

holds. 

We work in Banach spaces 

X = { u : u, D 

α−2 
0 + u, D 

α−1 
0 + u ∈ C[0 , 1] } , Y = L 1 (0 , 1) 

with the respective norms 

‖ u ‖ X = max {‖ u ‖ 0 , ‖ D 

α−2 
0 + u ‖ 0 , ‖ D 

α−1 
0 + u ‖ 0 } and ‖ y ‖ 1 

= 

∫ 1 

0 

| y (t ) | dt , 

where ‖ u ‖ 0 = max t∈ [0 , 1] | u (t) | . 
Remark 1. It should be mentioned that in [11] a solution is sought 

in the space of functions 

C α−1 = { u : u (t) = I α−1 
0+ x (t) + c 1 t 

α−1 + c 2 t 
α−2 , x ∈ C[0 , 1] } . 

If u ∈ C α−1 , then u (0) = 0 , which implies I 3 −α
0 + u (0) = 0 . Thus, it is 

unnecessary to include I 3 −α
0+ u (0) = 0 in the definition of dom L as 

it is done in [11] . The condition I 3 −α
0+ u (0) = 0 , in general, does 

not rule out a solution that is singular at t = 0 , for example, if 

α = 5 / 2 , u (t) = t −1 / 4 , then I 3 −α
0+ u (0) = 0 . So, if only non-singular 

solutions are under consideration and the domain of L is a sub- 

set of C α−1 , it need not be restricted by inclusion of I 3 −α
0+ u (0) = 0 , 

which already is a direct consequence of u ∈ C α−1 . An alternative 

to C α−1 is the space X endowed with the same norm as in [11] . 

Then the condition u (0) = 0 must be included in our definition of 

dom L . 

We assume that the following condition holds: 

( H 0 ) B i : X → R , i = 1 , 2 are linear bounded functionals with 

the respective norms ‖ B i ‖ , i = 1 , 2 , satisfying B 1 (t α−1 ) 

B 2 (t α−2 ) = B 1 (t α−2 ) B 2 (t α−1 ) , where B 2 
1 
(t α−1 ) + B 2 

1 
(t α−2 ) � = 

0 . For convenience, we introduce the constants β, a, b ∈ 

R defined by the relations a = B 1 (t α−2 ) , b = B 1 (t α−1 ) , 

B 2 (t α−2 ) = βa, B 2 (t α−1 ) = βb. 

Remark 2. By B i (u ) = 0 , i = 1 , 2 , we understand that there exist 

Riemann-Stieltjes measures ξ ij ( t ), i = 1 , 2 , j = 1 , 2 , 3 , such that 

B i (u ) = 

∫ 1 

0 

u (t) dξi 1 (t) + 

∫ 1 

0 

D 

α−2 
0 + u (t) dξi 2 (t) 

+ 

∫ 1 

0 

D 

α−1 
0 + u (t) dξi 3 (t) = 0 , i = 1 , 2 . 

However, we do not rely on the knowledge of these measures. 

Since �1 , �2 : C[0 , 1] → R are continuous linear functionals, the 

functional conditions in (2) allow similar representations as 

�1 (D 

α−1 
0 + u ) = 

∫ 1 

0 

D 

α−1 
0 + u (t) dη1 (t) = 0 , 

�2 (D 

α−2 
0 + u ) = 

∫ 1 

0 

D 

α−1 
0 + u (t) dη2 (t) = 0 , 

where η1 and η2 are Riemann-Stieltjes measures. Hence the con- 

ditions (2) are not quite as general as (5) . 

If B 1 (t α−1 ) = �(α)�1 (1) , B 1 (t α−2 ) = 0 , B 2 (t α−1 ) = �(α)�2 (t) , 

B 1 (t α−2 ) = �(α − 1)�2 (1) , then the problems (4), (5) and (1), 

(2) admit the same resonance conditions. It is clear that the func- 

tional problems (1), (2) and (4), (5) are closely related. In that re- 

spect, whenever we claim an improvement of a result of [11] , we 

merely refer to applicability of our method to that in the frame- 

work of (1), (2) . To be concrete, we will discuss the use of ( H 4 ) 

and ( H 6 ) in our work in comparison with ( H 4 ) and ( H 6 ) of [11] . 

Moreover, none of our existence criteria depend on the artificial 

conditions adopted in [11] : 

(a) �1 ( t ) � = 0 (Theorem 3.2 and 3.3); 

(b) �2 ( t 
2 ) � = 0 (Theorem 3.4); 

(c) 2�1 (t)�2 (t 3 ) − 3�1 (t 2 )�2 (t 2 ) � = 0 (Theorem 3.5). 

Indeed, L is a Fredholm operator and the construction of Q 

should not rely on the above. This is shown in Remark 3. As we 

have already mentioned, the main objective is to study the case 

(3) and the additional improvements and extensions may be found 

in Remarks 1–4. 

In this paper we are not concerned with an analogue of ( A 5 ) 

and uniqueness results. 

Define operators L : dom L ⊂ X → Y, N : X → Y by 

Lu (t) = D 

α
0 + u (t ) , Nu (t ) = f 

(
t , u (t ) , D 

α−2 
0 + u (t ) , D 

α−1 
0 + u (t ) 

)
, 

where dom L = { u ∈ X : D 

α
0 + u ∈ Y, u (0) = 0 , B i (u ) = 0 , i = 1 , 2 } . 

We recall now the essentials of the coincidence degree theory. 

Let X and Y be real normed spaces. A linear operator L : dom L ⊂
X → Y is called a Fredholm operator if Ker L has a finite dimension 

and Im L is closed and has a finite co-dimension. The Fredholm in- 

dex is the integer Ind L = dim Ker L − codim Im L . 

If P : X → X and Q : Y → Y are continuous linear projectors with 

Im P = Ker L, Ker Q = Im L, X = Ker L � Ker P, Y = Im L � Im Q, 

and L : X → Y is a Fredholm operator of index zero, then the inverse 

of the operator 

L | dom L ∩ Ker P : dom L ∩ Ker P → Im L 

exists and is denoted by K P : Im L → dom L ∩ Ker P . Furthermore, 

the operator N : X → Y is said to be L -compact on 
 if QN( 
) 

is bounded and K P (I − Q ) N : 
 → X is compact. The abstract equa- 

tion Lu = Nu is shown to be solvable in view of Theorem IV.13 [5] : 

Theorem 1.3. Let 
⊂ X be open and bounded, L be a Fredholm map- 

ping of index zero and N be L-compact on 
. Assume that the follow- 

ing conditions are satisfied: 

(i) Lu � = λNu for every (u, λ) ∈ (( dom L \ Ker L ) ∩ ∂
) × (0 , 1) ; 

(ii) Nu / ∈ Im L for every u ∈ Ker L ∩ ∂
; 

(iii) deg (QN| Ker L ∩ ∂
, 
 ∩ Ker L, 0) � = 0 , with Q : Y → Y a continu- 

ous projector such that Ker Q = Im L . 
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