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of the instability of the systems, we obtain their geodesics and compute their Jacobi vector fields. The 

results of this work improve and extend a recent advance in this topics studied in Peng et al.[13]. 
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1. Introduction 

The evolution of some systems could be predicted with certi- 

tude, however in some cases, by the complexity of the system, lack 

of information, etc, the predictions of final states can be done at 

the best only by assigning probabilities. Examples of these system 

could be found in biology, ecology, chemistry, physics, and eco- 

nomics. Some authors believe that quantum mechanics might be 

derived by the laws of probability inference, as well as happens 

with thermodynamic (see for instance [5] and [6] ). Entropic Dy- 

namics (see [7] ) provided a tool that could be useful in the study 

of the dynamics of certain complex systems. Roughly, given a sys- 

tem, the Entropic Dynamic make use of maximum relative entropy 

principle in order to determine a statistical manifold that model it. 

This statistical manifold represent the total macro-states of the sys- 

tem (i.e., probability distributions). To obtain this manifold, firstly 

we have to determine the micro-states and the constraint of the 

system. For instance, if we want to study the dynamics of k par- 

ticles in a l -dimensional Euclidean space, the micro-states could 

be the lk -random variables x = (x 1 , . . . , x k ) ∈ R 

lk with x i = x 1 
i 
, . . . , x l 

i 

and distributions p 
j 
i 

that represent the position of the particles. 

The constraints could be the expected values or the variances of 

p 
j 
i 
, or some extra knowledge, for instance, if these distributions 

are correlated or not. These constraints are the only testable infor- 

mation that we can get from the system. In order to get the family 

of distributions that better fit to the system we maximize the rel- 
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ative entropy functional (see [6] ) given a prior probability density 

(the uniform distribution). In the case that the constrains are the 

expected valued u 
j 
i 

and the variance v j 
i 

of p 
j 
i 

and assuming that x 
j 
i 

are independent distributed random variables, then we will get a 

statistical manifold S of dimension 2 lk parametrized by a function 

φ over some open set of R 

2 lk (
(u 

1 
1 , v 

1 
1 ) , . . . , (u 

l 
k , v 

l 
k ) 

)
−→ φ

(
(u 

1 
1 , v 

1 
1 ) , . . . , (u 

l 
k , v 

l 
k ) 

)
= (p 1 1 , . . . , p 

l 
1 , . . . , p 

1 
k , . . . , p 

l 
k ) ∈ S. 

We are going to consider the geometry of the manifold S in- 

duced by the Fisher information metric g (see Section 2 for the 

definition). The evolution of the system can be seen as a continu- 

ous path in S . The entropic dynamics principle claims that the sys- 

tem evolves followings the geodesics of the Riemannian manifold 

( S, g ). Therefore, the curvature of ( S, g ) encoded some information 

on the dynamic of the system. So, the task is to study the geome- 

try of ( S, g ) from the Information Geometry viewpoint (see [1] and 

[2] ) in order to understand the features of the system under con- 

sideration. There are several references related with the study of 

entropic dynamical models from the viewpoint of information ge- 

ometry, see for instance [4,5,10] among others. 

Nevertheless, there does not exist a general standard procedure 

to set up the appropriated constraints for a given system. Most of 

the time this must be done by intuition or by some experimental 

data. So, it seen important to understand the geometry of some 

statistical models. In the present article we study some statisti- 

cal manifolds that appear in several fields, such as physics, biol- 

ogy, social sciences, economics, see for instance [8,9,13–17] , among 

others. 

The aim of present article is to extend and study two entropic 

dynamical models introduced by Peng, Sun, Sun, and Yi in [12] . 
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In [12] , the authors studied the character of the instability of 

two entropic dynamical models: 

• M 1 : with a statistical manifold induced by a family of a joint 

Gamma and Exponential distributions 

• M 2 : with a statistical manifold induced by a family of a joint 

Gamma and Gaussian distributions. 

From the study of the geometry of both models, they found out 

that M 1 have first order linear divergent instability and M 2 have 

exponential instability. 

The first model that we consider is given by the statistical man- 

ifold induced by the k −joint one parametric exponential family (it 

model a system of uncorrelated k particles). Second, we study a 

system of two correlated particles modelled by the statistical man- 

ifold of the multivariate Gaussian probability family. Finally, we 

discuss how these models can be combined in order to generalize 

the obtained results to a large class of models. 

The paper is organized as follows. In Section 2 , we introduce 

a k -dimensional statistical manifold induced by densities of a one 

parameter exponential family and we study its geometrical struc- 

ture. We analyse the character of the stability of this model when 

k = 4 . In Section 3 , we study the geometric structure and the sta- 

bility of a Gaussian statistical manifolds with correlations. Conclu- 

sions and some extensions are presented in Section 4 . 

2. Geometric structure and stability of k−dimensional 

statistical manifold 

We refer the reader to [1] and [11] for definitions and standard 

results concerning to the geometry of statistical manifolds. 

We consider a system of k particles in a one dimensional space 

named x = (x 1 , . . . , x k ) . We assume that all information relevant 

to the dynamical model comes from the probability distribution 

which in this case is the joint distribution of k independent one 

parameter exponential family. More precisely, we consider the fol- 

lowing joint density function 

p(x , θ) = h (x ) exp 

( 

k ∑ 

s =1 

(ηs (θs ) T s (x s ) − γs (θs )) 

) 

with θ = (θ1 , . . . , θk ) , x = (x 1 , . . . , x k ) , T s is a continuous function 

and ηs and γ s are twice-differentiable functions for s = 1 , . . . , k . 

Therefore, we can define the associated statistical manifold as 

follows 

M k : = 

{ 

p(x , θ) = h (x ) exp 

( 

k ∑ 

s =1 

(ηs (θs ) T s (x s ) − γs (θs )) 

) 

θs ∈ R for s = 1 , . . . , k 

} 

. 

We are going to consider M k endowed with the Fisher-information 

matrix. This metric is proportional to the amount of information 

that the distribution function contains about the parameter. Recall 

that the local expression of the Fisher-information metric with re- 

spect to the coordinate system θ is: 

g i j ( θ) = E 
(
∂ i l ( θ) ∂ j l ( θ) 

)

where ∂ i l(θ ) = 

∂ 
∂θi 

log p(x , θ) . It is easy to see that the Fisher- 

information metric on M k can be computed as 

g i j ( θ) = E 
(
(η′ 

i (θi ) T i (x i ) − γ ′ 
i (θi ))(η

′ 
j (θ j ) T j (x j ) − γ ′ 

j (θ j )) 
)
. 

Since the variables x s ( s = 1 , . . . , k ) have density function belong- 

ing to one parameter exponential family, the expected value and 

the variance of T s can be computed easily in terms of ηs and γ s . 

Indeed, 

E(T s ) = 

γ ′ 
s (θs ) 

η′ 
s (θs ) 

V ar(T s ) = 

γ ′′ 
s (θs ) η′ 

s (θs ) − γ ′ 
s (θs ) η′′ 

s (θs ) 

(η′ 
s (θs )) 3 

. 

From the independence of the variables x s we have 

g i j ( θ) = δi j (η
′ 
i (θi )) 

2 V ar(T i ) = δi j 

γ ′′ 
i 
(θi ) η

′ 
i 
(θi ) − γ ′ 

i 
(θi ) η

′′ 
i 
(θi ) 

η′ 
i 
(θi ) 

, 

where δij is the Kronecker’s delta. Note that we have assumed un- 

coupled constraints between the micro-variables. This assumptions 

leads to a metric tensor with trivial off diagonal elements. 

The inverse matrix of g is 

g −1 = [ g i j ] = diag 

(
η′ 

1 (θ1 ) 

γ ′′ 
1 
(θ1 ) η′ 

1 
(θ1 ) − γ ′ 

1 
(θ1 ) η′′ 

1 
(θ1 ) 

, . . . , 

η′ 
k 
(θk ) 

γ ′′ 
k 
(θk ) η

′ 
k 
(θk ) − γ ′ 

k 
(θk ) η

′′ 
k 
(θk ) 

)
. 

The length element is given by 

d s 2 = g i j d θi θ j = 

∑ 

i 

γ ′′ 
i 
(θi ) η

′ 
i 
(θi ) − γ ′ 

i 
(θi ) η

′′ 
i 
(θi ) 

η′ 
i 
(θi ) 

dθ2 
i , 

and the volume element is 

d V g = 

√ 

g d θ1 ∧ · · · ∧ d θk = 

( ∏ 

i 

γ ′′ 
i 
(θi ) η

′ 
i 
(θi ) − γ ′ 

i 
(θi ) η

′′ 
i 
(θi ) 

η′ 
i 
(θi ) 

) 1 / 2 

d θ1 ∧ · · · ∧ d θk . (1) 

where 
√ 

g = 

√ 

det (g i j ) . 

Recall that the Christoffel symbols �l 
i j 

is defined by �l 
i j 

= �i js g 
sl 

( i, j, l, s = 1 , 2 , . . . , k ) where 

�i js = 

1 

2 

(∂ i g js + ∂ j g si − ∂ s g i j ) , i, j, s = 1 , . . . , k. 

For this model the Christoffel symbols that are not zero are: 

�i 
ii = 

γ ′′′ 
i 

(θi )(η
′ 
i 
(θi )) 

2 − γ ′ 
i 
(θi ) η

′′′ 
i 

(θi ) η
′ 
i 
(θi ) − η′′ 

i 
(θi )(γ

′′ 
i 
(θi ) η

′ 
i 
(θi ) − γ ′ 

i 
(θi ) η

′′ 
i 
(θi )) 

2 η′ 
i 
(θi )(γ

′′ 
i 
(θi ) η

′ 
i 
(θi ) − γ ′ 

i 
(θi ) η

′′ 
i 
(θi )) 

= 

1 

2 

(
γ ′′′ 

i 
(θi ) η

′ 
i 
(θi ) − A 

′ 
i 
(θi ) η

′′′ 
i 

(θi ) 

A 

′′ 
i 
(θi ) η

′ 
i 
(θi ) − γ ′ 

i 
(θi ) η

′′ 
i 
(θi ) 

− η′′ 
i 
(θi ) 

η′ 
i 
(θi ) 

)
. (2) 

The Ricci curvature R is is defined by R is = R i jsl g 
jl i, j, s, l = 

1 , . . . , k where 

R i jsl = (∂ j �
u 
is − ∂ i �

u 
js ) g ul + (� jtl �

t 
is − �itl �

t 
js ) . 

Therefore, it is easy to see that the curvature tensor components 

are all zero and the scalar curvature S g = 0 . 

Recall that the geodesic equations are given by the following 

non linear system of second order ordinary differential equations: 

∂ 2 θl 

∂τ 2 
+ �l 

i j 

∂θi 

∂τ

∂θ j 

∂τ
= 0 for i, j, l = 1 . . . , k. (3) 

From (2) we obtain that the geodesics are determined by the fol- 

lowing k differential equations: 

∂ 2 θi 

∂ 2 τ
+ �i 

ii 

(
∂θi 

∂τ

)2 

= 0 for i = 1 , . . . , k. (4) 
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