
Chaos, Solitons and Fractals 91 (2016) 639–648

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

Chaotic hash function based on circular shifts with variable

parameters

Yantao Li a , b , ∗, Xiang Li a

a College of Computer and Information Sciences, Southwest University, Chongqing 400715, PR China
b State Key Laboratory for Novel Software Technology, Nanjing University, Jiangsu 210023, PR China

a r t i c l e i n f o

Article history:

Received 18 May 2016

Revised 27 August 2016

Accepted 28 August 2016

Keywords:

Chaos

Hash function

Variable parameters

Piecewise linear chaotic map

One-way coupled map lattice

a b s t r a c t

We propose a chaotic hash algorithm based on circular shifts with variable parameters in this paper. We

exploit piecewise linear chaotic map and one-way coupled map lattice to produce initial values and vari-

able parameters. Circular shifts are introduced to improve the randomness of hash values. We evaluate

the proposed hash algorithm in terms of distribution of the hash value, sensitivity of the hash value to

slight modifications of the original message and secret keys, confusion and diffusion properties, robust-

ness against birthday and meet-in-the-middle attacks, collision tests, analysis of speed, randomness tests,

flexibility, computational complexity, and the results demonstrate that the proposed algorithm has strong

security strength. Compared with the existing chaotic hash algorithms, our algorithm shows moderate

statistical performance, better speed, randomness tests, and flexibility.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A hash function is a one-way function that can be used to map

arbitrary length of digital data to digital data with fixed length.

The digital data returned by a hash function are referred to as hash

value, or message digest. Hash functions have been used in a wide

range of applications, such as integrity protection [1] , message au-

thentication [2] and digital signature [3] , which have the properties

of sensitivity to initial conditions, diffusion and confusion, collision

resistance. Traditional hash functions such as MD5 and SHA-1 are

mainly based on logical operations, modular arithmetic operations

or digital algebraic operations, which greatly impact the security,

since attacks on these algorithms have been discovered [4–9] . For

instance, X.Y. Wang found an effective method to reduce the com-

plexity of collisions of SHA-1, issued as a Federal Information Pro-

cessing Standard by NIST [5] . Chaos has some inherent merits of

one way, sensitivity to tiny modifications in initial conditions and

parameters, mixing property and ergodicity, which can be used for

designing chaotic hash functions. K.W. Wong is the first to propose

the chaotic hash function, which is built on the number of itera-

tions of one-dimensional logistic map needed to reach the region

corresponding to the character, along with a lookup table updated

dynamically [10] . After then, chaotic hash functions are gradually

attracting more and more researchers to study ranging from the

∗ Corresponding author.

E-mail address: yantaoli@foxmail.com , liyantao@live.com , yantaoli@swu.edu.cn

(Y. Li).

use of simple maps, such as tent map [11–13] and logistic map

[14,15] , to the use of more complicated maps of the sine map [16] ,

standard map [17] , piecewise linear or nonlinear chaotic maps [18–

21] , and high-dimensional chaotic maps [22–24] .

Since these chaotic maps in cryptanalytic studies reveal secu-

rity weakness [25–33] , we propose a circular shift based chaotic

hash algorithm with variable parameters in this paper. We exploit

piecewise linear chaotic map and one-way coupled map lattice to

produce initial values and variable parameters. Circular shifts are

introduced to improve the randomness of hash values. We eval-

uate the proposed hash algorithm in terms of distribution of the

hash value, sensitivity of the hash value to slight modifications of

the original message and secret keys, confusion and diffusion prop-

erties, robustness against birthday and meet-in-the-middle attacks,

collision tests, analysis of speed, randomness tests, flexibility, com-

putational complexity, and the results demonstrate that the pro-

posed algorithm has strong security strength. Compared with the

existing chaotic hash algorithms, our algorithm shows better sta-

tistical performance and strong collision resistance.

The remainder of this paper is organized as follows: Section 2

briefly introduces the preliminaries of piecewise linear chaotic

map and one-way coupled map lattice used in our algorithm. In

Section 3 , we design the circular shift based chaotic hash function

with variable parameters in detail, which is composed of param-

eter initialization, message processing and hash value generation.

We excessively evaluate the performance of the proposed hash

algorithm in Section 4 and present conclusions in Section 5 .

http://dx.doi.org/10.1016/j.chaos.2016.08.014

0960-0779/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.chaos.2016.08.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.08.014&domain=pdf
mailto:yantaoli@foxmail.com
mailto:liyantao@live.com
mailto:yantaoli@swu.edu.cn
http://dx.doi.org/10.1016/j.chaos.2016.08.014

640 Y. Li, X. Li / Chaos, Solitons and Fractals 91 (2016) 639–648

Fig. 1. Lyapunov exponents of PWLCM for different control parameter u (u ∈ (0,

0.5)).

2. Preliminaries

In this section, we briefly depict the one-dimensional piecewise

linear chaotic map and the four-dimensional one-way coupled map

lattice used in our hash algorithm, respectively.

2.2. Piecewise linear chaotic map (PWLCM)

We select the one-dimensional piecewise linear chaotic map in

the proposed hash algorithm, which is expressed as:

x i +1 = PWLCM (u, x i) =

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

x i /u 0 ≤ x i < u

(x i − u) / (0 . 5 − u) u ≤ x i < 0 . 5

(1 − u − x i) / (0 . 5 − u)0 . 5 ≤ x i < 1 − u

(1 − x i) /u 1 − u ≤ x i ≤ 1

(1)

where x i represents the iteration trajectory value, and u denotes

the control parameter. When u is assigned values in (0,0.5), x i
evolves into a chaotic state in range of (0,1). The PWLCM has prop-

erties of uniform distribution, good ergodicity, confusion and diffu-

sion, therefore, it can provide chaotic random sequences. To show

the quality of PWLCM, we plot the Lyapunov exponents and the

bifurcation diagram for different values of control parameter u in

Figs. 1 and 2 . As illustrated in Figs. 1 and 2 , for 0 < u < 0.5,

PWLCM can exhibit chaotic behavior.

2.3. One-way coupled map lattice (OCML)

We select the four-dimensional one-way coupled map lattice in

the proposed hash algorithm, which is expressed as: ⎡

⎢ ⎣

x 1 (i + 1)
x 2 (i + 1)
x 3 (i + 1)
x 4 (i + 1)

⎤

⎥ ⎦

= OCML (e, x 1 (i) , x 2 (i) , x 3 (i) , x 4 (i))

=

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

x 1 (i + 1) = (1 − e) g(x 1 (i)) + eg(x 4 (i))

x 2 (i + 1) = (1 − e) g(x 2 (i)) + eg(x 1 (i))

x 3 (i + 1) = (1 − e) g(x 3 (i)) + eg(x 2 (i))

x 4 (i + 1) = (1 − e) g(x 4 (i)) + eg(x 3 (i))

where g (x) = 4 x (1- x), and e denotes a coupling constant in the

range of (0,1). The four inputs x 1 (i), x 2 (i), x 3 (i), and x 4 (i) are in

the range of [0,1], and the corresponding four outputs x 1 (i + 1),

x 2 (i + 1), x 3 (i + 1), and x 4 (i + 1) belong to the range of [0,1] as well

[34] .

3. Description of hash algorithm

In this section, we design the circular shift based chaotic hash

function with variable parameters, which is composed of parame-

ter initialization, message processing and hash value generation. In

addition, we describe the proposed algorithm in Algorithm 1 and

illustrate the structure of the proposed hash function in Figs. 3 and

4 . As designed, the input is an arbitrary length of message M’ and

the output is h = 128 bits of hash value.

3.1. Parameter initialization

We first convert the original message M’ into ASCII code values

based on the ASCII code chart and then save them in an array M ,

where the length of M is denoted as l . Then, with initial value x 0 =

0 . 8 and parameter u 0 = 0 . 232323 , we iterate the PWLCM (128 + l)

times to obtain an array X . Then we round the first 128 elements

of X to the nearest integers, and assign them to the initial hash

value H 0 (H 0 = (X [1] , X [2] , ..., X [128])), where H (i) (i = 1, 2,…, 128)

are binary values. Finally, we assign the rest elements of the array

X to a new array U (U = (X [129] , X [130] , ..., X [128 + l])), where U (i)

(i = 1, 2,…, l) are pure decimals.

3.2. Message processing

Since each element (character) of array M is processed in the

same mode, we choose M (n) (n = 1,2,…, l) as a representative to il-

lustrate the generation process of the n th middle hash value H n .

For element M (n), we iterate PWLCM i = 132 times to generate an

array uX with the initial value u x 0 =

M(n)
256 , and variable parameters

u u n =

u u 0 + u x n −1
3 (i = 1 , 2 , ..., 132) , where u u 0 = | w − � w � − 0 . 5 | and

w =

(n +1) ×(M(n)+2)
(n +2) ×(M(n)+1)

+ U(n) . Then, we round the first 128 elements

of uX into the nearest integers, and assign them to the four initial

buffers A, B, C, D as: A = (uX(1) , uX(2) , ..., uX(32)) ,

B = (uX (33) , uX (34) , ..., uX (64)) ,

C = (uX (65) , uX (66) , ..., uX (96)) ,

D = (uX (97) , uX (98) , ..., uX (128)) .

We assign the rest four elements of uX as: x 1 = uX(129) ,

x 2 = uX(130) , x 3 = uX(131) , and x 4 = uX(132) , which are the

input parameters of OCML. With above parameters, we iterate

OCML (uX (i), x 1 , x 2 , x 3 , x 4) i = 128 times and we obtain four

sequence values of x 1 , x 2 , x 3 , x 4 , each with length of 128.

Then, we assign values as: c h 1 (i) = mod (� x 1 (i) � × 10 0 0 , 32) + 1 ;

c l 1 (i) = mod (� x 1 (i) � × 10 0 0 0 , 32) ; c h 2 (i) = mod (� x 2 (32 + i) � ×
10 0 0 , 32) + 1 ; c l 2 (i) = mod (� x 2 (32 + i) � × 10 0 0 0 , 32) ; c h 3 (i) =

mod (� x 3 (64 + i) � × 10 0 0 , 32) + 1 ; c l 3 (i) = mod (� x 3 (64 + i) � ×
10 0 0 0 , 32) ; c h 4 (i) = mod (� x 4 (96 + i) � × 10 0 0 , 32) + 1 ; c l 4 (i) =

mod (� x 4 (96 + i) � × 10 0 0 0 , 32) .

For buffers A, B, C , and D , we conduct i -time (i = 1,2,…,32)

value switching and left circular shifts as: swap A (i) with

A (ch 1 (i)), and then apply cl 1 (i)-bit left circular shifts; swap B (i)

with B (ch 2 (i)), and then apply cl 2 (i)-bit left circular shifts; swap

C (i) with C (ch 3 (i)), and then apply cl 3 (i)-bit left circular shifts;

swap D (i) with D (ch 4 (i)), and then apply cl 4 (i)-bit left circu-

lar shifts. Then, we obtain updated buffer values A, B, C , and

D , which are then cascaded to generate the middle hash value

H n . Meanwhile, we store values as: ch f 1 (n) = c h 1 (1) + c h 2 (1) +

c h 3 (1) + c h 4 (1) , ch f 2 (n) = c h 1 (32) + c h 2 (32) + c h 3 (32) + c h 4 (32) ,

and cl f (n) = c l 1 (32) + c l 2 (32) + c l 3 (32) + c l 4 (32) .

Download English Version:

https://daneshyari.com/en/article/8254697

Download Persian Version:

https://daneshyari.com/article/8254697

Daneshyari.com

https://daneshyari.com/en/article/8254697
https://daneshyari.com/article/8254697
https://daneshyari.com

