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a b s t r a c t 

The aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy 

causality plane as a texture image descriptor. A multiscale generalization is introduced in order to dis- 

tinguish between different roughness features of images at small and large spatial scales. Numerically 

generated two-dimensional structures are initially considered for illustrating basic concepts in a con- 

trolled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that 

intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale sym- 

bolic information-theory approach. Consequently, we conclude that the proposed representation space is 

a versatile and practical tool for identifying, characterizing and discriminating image textures. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The development of complexity measures for two or higher di- 

mensional data has been recognized as a long-standing goal [1] . 

Several approaches were introduced during the last two decades 

for a quantitative distinction between different types of ordering 

or pattern in two-dimensional signals, such as images [2,3] . In par- 

ticular, techniques to detect fractal and multifractal features have 

been shown to be useful for dealing with the characterization 

of self-similar and extended self-similar objects [4–8] . These ap- 

proaches have their roots in the seminal work of Mandelbrot [9] , 

who just introduced fractal geometry to mimic natural textured 

patterns. Cloudy textures, such as those associated with mammo- 

graphic, terrain, fire, dust, cloud, and smoke images can be suit- 

ably described by these scaling and multiscaling analysis [5,6] . Ac- 

tually, recent effective applications in heterogeneous fields confirm 

that these fractal techniques are highly valuable tools, e.g. iden- 

tification of lesion regions of crop leaf affected by diseases [10] , 

Hurst exponent estimation performed on satellite images to mea- 

sure changes on the Earth’s surface [11] , and determination of scal- 

ing properties in encrypted images [12] . Despite all these signif- 

icant effort s, the development of a robust methodology to detect 
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and quantify spatial structures in images still represents an open 

and subtle problem. Along this research direction, we have previ- 

ously introduced an extension of the complexity-entropy causality 

plane to more than one dimension [13] . It has been shown that the 

two-dimensional version of this information-theory-derived tool is 

very promising for distinguishing between two-dimensional pat- 

terns. Motivated by this fact, in the present paper, we implement 

the two-dimensional complexity-entropy causality plane in differ- 

ent numerical and experimental contexts with the aim of testing 

its potentiality as a texture image quantifier. Furthermore, a mul- 

tiscale generalization of the original recipe is proposed for char- 

acterizing the dominant textures at different spatial scales. As it 

will be shown, this multiscale approach offers a considerable im- 

provement to the original tool introduced in Ref. [13] . Since any 

image corresponds to a two-dimensional ordered array, we conjec- 

ture that the proposed multiscale ordinal symbolic approach can 

be a useful alternative for an efficient and robust characterization 

of its features, offering deeper insights into the understanding of 

the underlying phenomenon that governs the spatial dynamics of 

the system at different resolution scales. 

This paper is organized as follows. In the next section, a brief 

review of the two-dimensional complexity-entropy causality plane 

is given. Besides, its generalization to multiple spatial scales is also 

described. In Section 3 , we have included several numerical and 

experimental applications. More precisely, in Section 3.1 , an initial 

periodic ornament is carefully analyzed when adding a variable 
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degree of randomness by changing the color of each pixel with 

a given probability. A numerically controlled example to illustrate 

the importance of implementing a multiscale analysis is detailed in 

Section 3.2 . The normalized Brodatz texture database is studied in 

Section 3.3 and results obtained from the characterization of some 

real images of interest are included in Section 3.4 . Finally, the main 

conclusions of this research are summarized in the last Section 4 . 

2. Complexity-entropy causality plane for two-dimensional 

patterns 

A two-dimensional symbolization procedure, following the en- 

coding scheme introduced by Bandt and Pompe (BP) [14] , is ap- 

plied to the image under study. Given a N x × N y image (2D ar- 

ray), the symbolic sequences are obtained by considering the spa- 

tial ranking information (ordinal or permutation patterns) associ- 

ated with overlapping subarrays of size D x × D y . This procedure 

can be better introduced with a simple example; let us assume 

that we start with the 3 × 3 array given below 

A = 

( 

3 4 8 

5 6 7 

2 8 9 

) 

. 

Four parameters, the embedding dimensions D x , D y ≥ 2 ( D x , D y ∈ 

N , the number of symbols that form the ordinal pattern in the 

two orthogonal directions) and the embedding delays τ x and τ y 

( τx , τy ∈ N , the spatial separation between symbols in the two or- 

thogonal directions) are chosen. The matrix is partitioned into 

overlapping subarrays of size D x × D y with delays τ x and τ y in 

the horizontal and vertical directions, respectively. The elements 

in each new partition are replaced by their ranks in the sub- 

set. For instance, if we set D x = D y = 2 and τx = τy = 1 , there 

are four different partitions associated with A . The first subarray 

A 1 = ( 
a 0 a 1 
a 2 a 3 

) = ( 
3 4 
5 6 

) is mapped to the ordinal pattern (0123) 

since a 0 ≤ a 1 ≤ a 2 ≤ a 3 . The second partition is A 2 = ( 
a 0 a 1 
a 2 a 3 

) = 

( 
4 8 
6 7 

) , and (0231) will be its related ordinal motif because a 0 ≤
a 2 ≤ a 3 ≤ a 1 . The next subarray A 3 = ( 

a 0 a 1 
a 2 a 3 

) = ( 
5 6 
2 8 

) is as- 

sociated with the ordinal pattern (2013), and the last one A 4 = 

( 
a 0 a 1 
a 2 a 3 

) = ( 
6 7 
8 9 

) is also mapped to the motif (0123). Subarrays 

with consecutive elements are taken in the above example because 

the embedding delays τ x and τ y are fixed equal to one. How- 

ever, non-consecutive elements of the original array can be consid- 

ered by changing the embedding delays. For instance, by choosing 

τx = 2 and τy = 1 only two partitions are obtained from array A, 

namely A 1 = ( 
3 8 
5 7 

) and A 2 = ( 
5 7 
2 9 

) . Their related ordinal per- 

mutations will be (0231) and (2013), respectively. Finally, in the 

case τx = τy = 2 only one subarray, A 1 = ( 
3 8 
2 9 

) , with motif (2013) 

can be obtained. It is worth remarking that different spatial reso- 

lution scales are taken into account by changing the embedding 

delays. 

An ordinal pattern probability distribution 

P BP = { p(πi ) , i = 1 , . . . , (D x D y )! } , (1) 

is subsequently obtained by computing the relative frequencies of 

the ( D x D y )! possible ordinal patterns π i . For a reliable estimation 

of this distribution, the image size must be at least an order of 

magnitude larger than the number of possible ordinal states, i.e. 

N x N y � ( D x D y )!. It is clear that the 2D encoding scheme previously 

described is not univocally defined. Actually, instead of ordering 

the elements row-by-row, an alternative column-by-column order- 

ing recipe could be proposed. However, the BP probability distribu- 

tion ( Eq. (1) ) would remain unchanged since only the label given 

to the accessible states would change by implementing this alter- 

native definition. 

Once the BP probability distribution has been obtained, any 

information-theory-derived quantifier can be estimated. In particu- 

lar, and in order to introduce the complexity-entropy diagram, the 

two involved measures—entropy and complexity—need to be de- 

fined. Around a decade ago, Rosso et al. [15] proposed to use the 

normalized Shannon entropy and the normalized Jensen-Shannon 

complexity for such a purpose. It has been shown that chaotic 

and stochastic time series are located at different regions of this 

representation space, thus allowing an efficient discrimination be- 

tween these two kinds of dynamics that are commonly very hard 

to distinguish. Given any arbitrary discrete probability distribution 

P = { p i , i = 1 , . . . , M} , the Shannon’s logarithmic information mea- 

sure is given by 

S[ P ] = −
M ∑ 

i =1 

p i ln p i . (2) 

The Shannon entropy S [ P ] is regarded as a measure of the uncer- 

tainty associated to the physical processes described by the prob- 

ability distribution P . It is equal to zero when we can predict with 

full certainty which of the possible outcomes i whose probabil- 

ities are given by p i will actually take place. Our knowledge of 

the underlying process described by the probability distribution is 

maximal in this instance. In contrast, this knowledge is minimal 

and the entropy (ignorance) is maximal ( S max = S[ P e ] = ln M) for 

the equiprobable distribution, i.e. P e = { p i = 1 /M, i = 1 , . . . , M} . The 

Shannon entropy is a quantifier for randomness. It is well-known, 

however, that the degree of structure present in a process is not 

quantified by randomness measures and, consequently, measures 

of statistical or structural complexity are necessary for a better un- 

derstanding of complex dynamics [16] . As stated by Lange et al. 

[17] : One would like to have some functional C[P] adequately captur- 

ing the “structurednes” in the same way as Shannon’s entropy cap- 

tures randomness . There is not a universally accepted definition of 

complexity [18] . In this work, we have implemented the effective 

statistical complexity measure (SCM) introduced by Lamberti et al. 

[19] , following the seminal notion advanced by López-Ruiz et al. 

[20] , through the product 

C JS [ P ] = Q J [ P, P e ] H S [ P ] (3) 

of the normalized Shannon entropy 

H S [ P ] = S[ P ] /S max (4) 

and the disequilibrium Q J [ P, P e ] defined in terms of the Jensen- 

Shannon divergence. That is, 

Q J [ P, P e ] = J [ P, P e ] / J max (5) 

with 

J [ P, P e ] = S[(P + P e ) / 2] − S[ P ] / 2 − S[ P e ] / 2 (6) 

the above-mentioned Jensen-Shannon divergence and J max the 

maximum possible value of J [ P, P e ] . Being more precise, J max = 

− 1 
2 [ 

M+1 
M 

ln (M + 1) − 2 ln (2 M) + ln (M)] is obtained when one of 

the components of P , say p m 

, is equal to one and the remain- 

ing p i are equal to zero. The Jensen-Shannon divergence quantifies 

the difference between two (or more) probability distributions. For 

further details about this information-theory divergence measure 

please see Refs. [21,22] . Note that the above introduced SCM de- 

pends on two different probability distributions, the one associated 

to the system under analysis, P , and the uniform distribution, P e . 
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