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a b s t r a c t 

Applying the mechanism of the preferential selection of the flow destination, we develop a new method 

to quantify the initial load on an edge, of which the flow is transported along the path with the shortest 

edge weight between two nodes. Considering the node weight, we propose a cascading model on the 

edge and investigate cascading dynamics induced by the removal of the edge with the largest load. We 

perform simulated attacks on four types of constructed networks and two actual networks and observe 

an interesting and counterintuitive phenomenon of the cascading spreading, i.e., gradually improving the 

capacity of nodes does not lead to the monotonous increase in the robustness of these networks against 

cascading failures. The non monotonous behavior of cascading dynamics is well explained by the analysis 

on a simple graph. We additionally study the effect of the parameter of the node weight on cascading 

dynamics and evaluate the network robustness by a new metric. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Modern human societies are supported by various functional 

networks, such as power grids, the Internet, and traffic networks. 

The safety of these networks has been one of the classical research 

topics [1–9] . In particular, many researchers focus on the robust- 

ness of real networks against cascading failures [10–17] . Cascading 

failures are a sort of phenomena that a random failure or inten- 

tional attack on one or a few nodes triggers successive breakdowns 

and leads to serious damage to the whole network. Some typical 

real-world examples of cascading failures are the large-scale black- 

outs in some countries [10–15] , e.g., the blackouts of America in 

2003, Italy in 2003, London in 2003, and northern India in 2012. In 

addition, frequent traffic paralysis in some big cities and Internet 

collapse [16,17] are also caused by cascading failures. In order to 

mitigate and prevent various cascading-failure-induced disasters in 

the real world, many researchers investigated a number of impor- 

tant aspects of cascading failures, including the models for describ- 

ing the cascade phenomena [18–24] , the efficiency of random or 

targeted attacks [25–31] , the cascade control and defense strategies 

[32–39] , cascading failures in the multiplex networks [40–42] , the 

percolation in the interdependent networks [43–52] , and so on. 

In many infrastructure networks, some sort of flow is often 

required to realize its functionality and at the same time the flow 

plays a role of a load in the network, such as traffic flow in the 
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traffic network, electric current in a power grid, and data packet on 

the Internet [33] . Therefore, in previous studies on cascading fail- 

ures, how to quantify the load on a node or an edge is the central 

issue. In earlier studies, the initial load on a node or an edge was 

generally given by the betweenness centrality of the node or the 

edge. Applying the betweenness centrality, the pioneering work 

by Motter et al. [53] discuss cascade-based attacks on complex 

networks and demonstrate that the initial removal of the highest 

degree (or highest load) node leads a large-scale cascade and 

scale-free networks are more fragile against cascading overload 

failures than homogeneous networks. Based on the strategy of the 

intentional removals of nodes and edges before the propagation of 

the cascade, Motter [54] propose a simple method to reduce the 

size of cascades of overload failures and show that the size of the 

cascade can be drastically reduced with the intentional removals 

of nodes having small load and/or edges having large excess of 

load. Defining the load on a node by the efficient paths, Crucitti 

et al. [55] propose a simple model for cascading failures and show 

how the breakdown of a single node is sufficient to collapse the 

entire system simply because of the dynamics of redistribution 

of flows on the network. Although the betweenness method can 

be widely applied to define the initial load on a node or an edge, 

it may be invalid for quantifying the flow of physical quantities 

in real networks. Since only one unit of the data packet between 

any two nodes is transported along with the shortest path, the 

betweenness method cannot thus approximate the traffic load in 

real networks, ignoring the differences among nodes, the weight 

of every edge, and the preferential characteristic of the destination 
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selection of the flow. Therefore, we propose an improved between- 

ness measurement and construct a simple cascading model. 

Considering the preferential mechanism of the flow transporta- 

tion and the weights of nodes and edges, we analyze cascading 

dynamics on edges and develop a new method to assign the ini- 

tial load of an edge. We propose a simple cascading model and 

study cascading failures on four artificial networks and two em- 

pirical networks. By disturbing the edge with the highest load, 

we observe an interesting and counterintuitive phenomenon in the 

cascading propagation. In these networks including the scale-free 

networks, the small-world network, the regular network, the ran- 

dom network, the traffic network, and the airport network, we find 

that, sometimes, improving the capacity of every edge inversely in- 

duces the robustness of these networks against cascading failures, 

evaluated by four metrics. We observe that the weights of nodes 

and edges have not affect the emergence of the abnormal cascad- 

ing spreading in these networks. The non monotonous behavior of 

cascading dynamics is well explained by the analysis on a simple 

graph. Finally, we evaluate the network robustness by a new met- 

ric and give the correlation between the parameter of the node 

weight and the new metric. 

2. The model 

In previous studies, the initial load on a node or an edge is 

given by the betweenness centrality of the node or the edge, i.e., 

the initial load of a node or an edge is naturally defined to the to- 

tal number of shortest paths passing through it. However, in previ- 

ous cascading models [53–55] based on the betweenness method, 

network weights have not been taken into consideration, regard- 

less of the facts that real networks display a large heterogeneity 

in the weights which have a strong correlation with the network 

topology. For example, in the airport network, the number of the 

traveling passengers on every airport may be different, and these 

passengers do not randomly select the destinations. Similarly, in 

the Internet, the data packets generated by every router are also 

different, and they select the destinations according to some rules. 

Motivated by this fact, we propose a new method to define the 

initial load of an edge. 

Firstly, considering the heterogeneity in the capacity of nodes, 

we define the weight (or strength) of a node according to its 

local characteristics. Inspired by Refs. [56–60] , we assume the 

weight w i of node i to k α
i 
, where α is a tunable weight parameter, 

governing the strength of the node weight, and k i is the degree of 

node i . This assumption is supported by empirical evidence of real 

weighted networks [58,59] , i.e., the bigger the node degree, the 

higher the node weight. Moreover, the ref [60] use this method 

to define the load or weight of a node. Based on the node weight, 

we study the preferential mechanism of the destination selection 

of flows. We use F i → 

to denote the flow generated by node i . For 

simplicity, we assume F i → 

= w i . We use F i → j to denote the flow 

transported from node i to node j . In F i → 

, we assume that the 

flow transported from node i to node j ( i � = j ) is proportional to 

the weight of node j , i.e., 

F i → j = F i → 

w j ∑ 

m ∈ N w m 

− w i 

, (1) 

where N is the set of nodes in a network. 

Since the flow via the edge plays a role of a load, we focus 

on the effect of the flow transported between two nodes on the 

edges. We assume that the flow is transmitted along the shortest 

paths with the edge weight connecting two nodes. Without loss 

of generality, in later simulations, the weight of every edge is as- 

signed by random numbers of the uniform distribution. If there is 

more than one shortest path with the edge weight connecting two 

given nodes, the flow is divided evenly at each branching point 

(see Fig. 1 ). 

The initial load of an edge is defined as the amount of the flow 

between pairs of nodes that run through that edge. In Fig. 2 , by 

the total amount of the flow passing through a given edge, we cal- 

culate the initial load L ij of edge ij , i.e., 

L i j = 

∑ 

m ∈ N,n ∈ N 
L (m,n ) 

i j 
, (2) 

where L (m,n ) 
i j 

denotes the load via edge ij among the flow trans- 

ported between the ordered node pair m and n . In particular, when 

α = 0 and the weight of every edge is same, our method to define 

the initial load is as same as one of the betweenness centrality 

[53–55] . Following Refs. [13–15,18,19,26,27,53–55] , we assume the 

capacity C ij of edge ij to be proportional to its initial load L ij . 

C i j = (1 + β) L i j , (3) 

where the parameter β ≥ 0 is the tolerance parameter. This is a 

realistic assumption in real networks, since the capacity cannot be 

infinitely large because it is limited by the cost. With such a def- 

inition of capacity, initially the network is in a stationary state in 

which the load at each edge is not bigger than its capacity. The re- 

moval of an edge, changing the topological structure and the path 

lengths among some nodes, destroy the balance of the load and 

lead to a global redistribution of loads in the network. After up- 

dating the load of every remaining edge, some edges of overloads 

will be removed from the network, since their limited capacities 

are insufficient to handle the extra load. This leads to a new redis- 

tribution of loads and triggers a cascade of overload failures. This 

cascading process stops only when the capacity of every remaining 

edge is not smaller than its updated load. 

After the cascading propagation is over, we calculate the num- 

ber G of nodes in the largest connected component, the number S E 
of failed edges, and the avalanche size S N of failed nodes. We addi- 

tionally propose a new metric S C , i.e., the number of the connected 

component (there are at least two nodes in every connected com- 

ponent). S C can quantify the degree of fragmentation of the whole 

network. In later simulations, we use G, S E , S N , and S C to evaluate 

the network robustness against cascading failures. 

3. The analysis of the cascading model 

Since the network structure plays an important role in the 

cascading propagation, we first select four types of classical ar- 

tificial networks to study cascading dynamics on them. These 

networks are the BA scale-free networks [61] , the Ring networks, 

the WS small-world networks [62] , and the ER random networks. 

BA networks can be constructed as follows: starting from m 0 

fully connected nodes, a new node with m ( m ≤ m 0 ) edges is 

added to the existing network at each time step according to the 

preferential attachment, i.e., the probability of being connected to 

the existing node i is proportional to its k i . We set N = 200 and 

m 0 = 2 , m = 2 , i.e., the average degree 〈 k 〉 is about 4. In the Ring 

network, the starting point is a N nodes ring, in which each node 

is symmetrically connected to its 2 m nearest neighbors for a total 

of m × N edges. Here, we also set N = 200 and m = 2 , i.e., the 

average degree 〈 k 〉 is about 4. WS networks can be constructed as 

follows: starting from a ring network with 200 nodes and 4 edges 

per node, we rewire each edge at random with the probability p . 

When p = 0 . 01 , WS networks have both the small-world property 

and a high clustering coefficient. Therefore, in simulations, we set 

p = 0 . 01 in WS networks. To compare the effect of the network 

structure on cascading dynamics, we generate ER network with 

200 nodes and 〈 k 〉 = 4 . We propose a new method as follows: 

starting from a ring network with 200 nodes and 4 edges per 

node, we rewire each edge at random with probability p = 1 . 
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