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a b s t r a c t

The aim of this work is to study the rheological response of gelatinized starch dispersions under

constant shear stress. To this end, starch dispersions at four different starch concentrations,

were prepared by stirring and heating at 90 °C by 20 min. The experiments showed that the

mechanical (i.e., strain) response is composed by a long-term trend that can be described

by a two-relaxation mode process, and a high-frequency unstable response. Optical images

indicated that the compact packing of the insoluble amylose-rich material, known as ghosts,

is responsible for the unstable flow response. In fact, after destroying the starch dispersion

microstructure with severe shear conditions (sonication), it was observed that the unstable

flow response was no longer present. Fourier and fractal (DFA) analyses showed that the

scaling characteristics of the strain instabilities depend on the starch concentration and the

applied shear stress value. Also, the characteristic flow curves suggested that yield stress and

non-monotonous flow curves are at the center of the mechanisms triggering elastic turbulence

in starch dispersions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that inertial effects (i.e., momentum) can

lead to flow instabilities, such as vortex turbulence and inter-

mittencies. Instabilities appear when a critical Reynolds num-

ber is achieved. Since the Reynolds number is related to the

ratio of forces caused by inertia over those of the flow resis-

tance of the fluid, so relatively high Reynolds number are re-

lated to low viscosity samples. However, experimental results

on solutions of flexible long-chain polymers showed that

complex flow patterns can arise at relatively low Reynolds

numbers where inertial mechanisms play a marginal role
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in the flow development [1]. The phenomenon, called as

elastic turbulence, was characterized by a significant stretch-

ing of the polymer molecules and an increased elastic stress

of two orders of magnitude. Given the marginal role of inertial

effects in the Navier–Stokes equations, the elastic turbulence

effect was explained by considering nonlinear constitutive

relationships between the elastic stress and the rate of flow

deformation [2,3]. Pure elastic flow instabilities under the

absence of inertial forces in devices used for viscoelasticity

measurements were reported in a detailed review [4].

A diversity of experiments and numerical simulations ex-

ploring elastic turbulence has been reported. Experiments in-

clude rotational flows between two cylinders [5] and plates

[6,7], also in curved channels [8], around obstacles [9], and

in long, straight micro-channels [10]. It has been pointed out

[10] that most of the nonlinear flow behavior observed in
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elastic turbulence studies can be explained from the elastic

stresses due to the mechanical behavior of polymer molecules

in the fluid. The underlying elastic stresses evolve on a wide

range of time-scales reflecting the time needed for a polymer

molecule to relax to its equilibrium state [11]. As a matter of

fact, the equilibrium relaxation times of polymeric solutions

can become of the order of seconds to minutes [12]. In this re-

gard, elastic turbulence appears in hydrodynamic turbulence

below the dissipation scale.

The vast majority of studies on elastic turbulence have

been related to highly structured complex fluids, including

micellar solutions [13–16], dense lamellar phases [17–20]

and dense suspensions [21,22]. Shear banding is commonly

found in flow instabilities related to elastic turbulence in

wormlike micellar systems [23]. Complex spatio-temporal

fluctuations have been attributed to different mechanisms,

including wall slip, interfacial instability between bands or

bulk instability of one of the bands. It has been shown that

type-II intermittence can explain the route to chaos in worm-

like micelles with flow-concentration coupling [15]. Also, the

observed spatial dynamics of the interfaces of vorticity rolls

depended crucially on the gap width of the Couette cell [16].

The reader is referred to a recent critical review of the experi-

mental results and possible instability mechanisms related to

wormlike micellar systems [24]. For dense lamellar phases,

rheochaos has been explained with the occurrence of struc-

tural changes [25].

The idea behind the unstable flow behavior of struc-

tured complex fluids is that the fluid components rearrange

themselves for adapting to changing shear conditions. Over-

all, these results suggested that the existence of a complex,

highly elastic microstructure is an important ingredient for

obtaining rheological instabilities under very-low Reynolds

numbers [26]. In turn, it should lead to the manifestation of

secondary vortex flows and increased flow resistance [27].

Yet the existence of elastic turbulence in flows of biopoly-

mer solutions has been rarely explored. Biomaterial-based

fluids commonly exhibit complex microstructures, including

highly elastic fractions. Biopolymers, among other applica-

tion, are widely used in biomedical, pharmaceutical and food

industries as thickeners, thinners, gelation agents, and emul-

sion stabilizers [28]. Gelatinized starch dispersions are par-

ticularly interesting in this regard since starch dispersions are

composed of dispersed amylopectin-rich swollen starch par-

ticles embedded in a continuous 3D network created by the

dissolved amylose [29,30]. Swollen starch particles, known

as ghosts because of their appearance in optical microscopy,

are highly elastic structures moving freely in a continuous

3D network [31]. It has been shown that starch dispersions

can exhibit nonlinear viscoelasticity due to inertial effects

[32]. Similar to giant micelle dispersions, these ingredients,

in combination with relatively small shear stress conditions,

can lead elastic turbulence in rheological measurements. In

a recent work, we showed that starch dispersions display

chaotic rheological patterns that can be attributed to flow

instabilities [33].

The aim of this work was to further exploring the na-

ture and characteristics of elastic turbulence of gelatinized

starch dispersions. Whereas in a previous work [32] we re-

ported elastic turbulence for gelatinized starch dispersions

at 5% (w/w), in this work we explore the effects of starch

concentration. To this end, gels at four different starch con-

centrations were prepared by cooking starch dispersions at

90 °C for 20 min. Rheological measurements were carried out

in a shear stress-controlled rheometer at room temperature

(25 °C). The measured shear strain response exhibited com-

plex patterns in relation to different constant shear stress

conditions. The analysis of the measured signals by means

of Fourier analysis and detrended fluctuation analysis sug-

gest that the flow instabilities have an elasticity-dominance

origin.

2. Experimental set-up

Four corn starch (Sigma–Aldrich, Saint Louis, MO) con-

centrations were considered; namely, 3, 4, 5 and 6% (w/w).

The reader is referred to our previous work in [32] for de-

tails of the starch specifications and the preparation of the

gelatinized starch dispersions.

2.1. Rheological measurements

The results in this work were based on the determination

of the shear strain in the bulk of the starch dispersions in

response to a constant shear stress application. The proce-

dure and the equipment used are detailed in our previous

work [32].

3. Detrended fluctuation analysis

The detrended fluctuation analysis (DFA) [34] has been

established as an accurate method to detect such correlations

in data affected by trends. The method is based on random

walk theory. For completeness in the presentation, a brief

description of the method will be given below. In DFA, the

time-series xk, k = 1, . . . , N, is first integrated

Yk =
k∑

j=1

(xj − 〈xk〉), k = 1, ..., N (1)

where 〈xk〉 = 1
N

∑N
j=1 xj is the time-series mean. After divid-

ing Yk into Ns = [N/s] not-overlapping segments of equal

length s, a piecewise polynomial trend Ys, k is estimated

within each segment and the detrended series is calculated

as Ỹk = Yk − Ys,k. The degree of the polynomial fit can vary

in order to eliminate linear, quadratic or higher order trends

of the integrated time series. Here we use linear polynomials

for detrending. The fluctuation function is computed as

F(s) =
⎛
⎝ 1

sNs

sNs∑
j=1

Ỹ2
k

⎞
⎠

1/2

(2)

Each integrated time series is self-similar if the fluctuation

function F(s) scales as a power law with the segment size s

(i.e., the number of strides or complex values in a segment of

observation or time scale). Typically, F(s) increases with the

segment size s. A linear relationship on a double-log graph

indicates that

F(s) ≈ sα (3)

where the scaling exponent α (also called the self-similarity

or self-affine parameter) is determined by calculating the
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