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In this paper, we intend to generalise the work of Barral et al. (2003) [1], which provides a
bridge between the c-adic boxes and the grid-free approaches to the multifractal analysis of
measures. More precisely, we consider some sort of an irregular grid. We apply our results to
a Bernoulli measure.
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1. Introduction and preliminaries

The multifractal analysis is a natural framework to de-
scribe geometrically the heterogeneity in the distribution at
small scales of positive and finite compactly supported Borel
measures on a metric spaces X. Specifically, for such a mea-
sure j, one considers the level sets of the pointwise Holder
exponent of i, this heterogeneity can be classified by consid-
ering the iso-Holder sets

log(u(Be.1) _ |
logr

Then, the singularity spectrum of  is the mapping
o> 0+— dim(X, (o))

where dim stands for the Hausdorff dimension. We say that
the multifractal formalism is valid if dim(X,, («)) is equal to
the Legendre transform at o of a scale function associated
to w. In [3], in order to prove the validity of the centred mul-
tifractal formalism of Olsen [7], the authors imposed a condi-
tion on the exterior generalised Hausdorff measure HiB“ (q),
more precisely, they proved that

if 25%? (Suppu) > 0 then dim(X,,(—B,, (9)))
= B;, (=B, (@)

where Bj is the Legendre transform of B,,. Unfortunately, this
hypothesis is often difficult to verify because the measure is in

X (o) = {x € Suppy/ lim
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general constructed generally over boxes. In [1], the authors

replaced the hypothesis Hf;B“(q)(Suppu) > 0 by conditions
depending only on the measure i and the ¢ — adic grid.
More precisely, they showed that under the neighbouring
box condition (NBC) hypothesis and if there exists a Frostman
measure associated to w for the c-adic boxes, the centred
multifractal formalism is valid. Notice that the authors have
been applied these results to quasi-Bernoulli and Mandelbrot
measures ([1]).

In this work, we propose to generalise results of ([1]) to
an irregular grid. Then we will apply our main theorem to
a Bernoulli measure. Let’s give a brief description of the or-
ganisation of the paper. For the convenience of the reader
we recall the Olsen’s multifractal formalism ([7]) in Section
2. Section 3 deals with box formalism. In Section 4 we state
our main results and their proofs. In Section 5, we prove the
validity of the multifractal formalism for a Bernoulli measure
constructed on an irregular grid.

2. A centred multifractal formalism

Definition 2.1. A metric space (X, d) is said to have the Besi-
covich covering property if there exists a positive integer &
such that, given any collection {B(x;, r;)}; of balls, one can
extract from it, & packings Py, Py, Ps, ..., P¢ which altogether
form a cover of the set {x;};.

Let (X, d) be a metric space having the Besicovich covering
and p a positive atomless Borel measure on X. According
to Olsen (|7]), we define several measures and premeasures
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indexed by a couple (g, t) of real numbers. If E is a subset of X
and 4 is a positive real number, we set

Pis(E) =sup Y w(Bk;. ;) (2r)"

i
with the convention, 09 = 0 for all g € R, which is valid
throughout this paper.

Notice that this supremum is being taken over the collec-
tions {B(x;, 1;)}; of centred §-packing composed of mutually
closed disjoint balls of E whose centers x; belong to E and
whose diameter 2r; are less than 6. We consider the limit

Py (€)= Jim P ()

The function Pﬂlf is called packing pre-measure. It is in-
creasing and it lacks o -subadditivity to be a Caratheodory

outer measure. That is why one considers the following
quantity

inf Y " PLE;

Ecquj;P" (&)

N3
PLE) =
which, as a function of E, is an outer measure. This is the same
process as for defining packing measures, which were intro-
duced in ([9]). In a similar way, one defines the generalised
Hausdorff measure with respect to g and t.

H,'5 (E) = inf Y (B, 1)) 2r;)".
J

This infimum is being taken over all é- centred covering
{B(x;, 1j)}; of E by balls such that ECU;B(;, ;) , whose cen-
ters x; belong to E and whose diameter 2r; are less than § and
consider the limit

H'E) = lim 725 (E)

The function . ”’ is o -subadditive but not increasing. In order
to deal with an outer measure, one defines

HENE) = supﬁi’t(F)
FcE

These last measures are the multifractal counterparts of the
centred Hausdorff measures introduced in [8]. For a fixed
q, if, for some t, one has ﬁi‘t(Suppu) < +oo, then, for all
t' > t, one has fff, (Suppp) = 0. Where Suppu stands for

the topological support of 1. Therefore, there exists a unique
A, (q) € Rsuch that

A,u(q) = sup {t € R/P, (Supppt) = +o0}

In a similar way, there exist two functions B, and b, respec-
tively associated with P{* and #{;" such that

B,.(q) = sup {t € R/P}' (Suppps) = +o0}
and
b, (q) = sup {t € R/H];' (Suppu) = +00}

Record that all these three functions are non increasing and
A, and B, are convex. It is clear that B, < A,.

Remark that if moreover the metric space (X, d) has the
Besicovich covering property defined previously, one has
b, < B, and we conclude that

by =By < Ap (2.1)

If « and B are two real numbers such that ¢ < B, one
considers the following sets

log i (B(x, 1))
logr
. log u (B, r)) }

< limsu

SR gy =7

X, B) = {x € Suppu/a < liminf

Instead of X, (v, o), we shall simply write X, («).
If the derivative of B;, exists at point g, it is known [4,7]
that the following inequalities hold, if X;, (B}, (q)) # ¢

dimX,, (-B),(q)) < b}, (=B}, (q))
DimX,.(-B),(q)) < B}, (- B;L(Q) (2.2)

where dim and Dim stand for the Hausdorff and packing
dimensions ([8], [9]), and the star as an exponent denotes the
Legendre transform, i.e.

fa)= jlgﬂg(aq +f@). xeR

Definition 2.2. If B}, (q) exists and if all the quantities in (2.2)
are equal, one says that the measure u obeys the multifractal
formalism at point q.

In [3], Ben Nasr et al., have established the following
result.

Theorem (3). Suppose that (X, d) has the Besicovich covering

property, then if « = —B), (q) exists and HZ’B“ @ (Suppp) > 0,
one has

dimX,, (o) = DimX,, () = B, (@) and b, (q) =B.(q)

3. Box analysis

Let F = Ups1 Fn such that {F,},-1 stands for a sequence
of nested finite partition of [0, 1[, by semi-open intervals. If
x belongs to [0, 1], I,(x) stands for the interval in F, which
contains x. If I is the Borel set in [0, 1[, |I| denotes its Lebesgue
measure.

We suppose that:

Hq) Fnyq is a refinement of F, and for all x € [0, 1[;
limy s +oo|In(X)] = 0

H,) There exist s € N\{0} and L > 0 such that for every x €
10, 1] and for all 0 < r < 1, there exist k contiguous in-
tervalsof 7, J1,J, ..., Ji (k <s), of the same generation,
satisfying
L.V1i<isk {(r<|il=<Lr
2. B(x,2r)n[0, 1[CJ1 Uy - - - U],
3. V y € B(x, )]0, 1],

31 <i<k; Jj c Bly,r)withy e J;

or

31 <iy, i, <k; Ji, and J;, contiguous and
yeliy U, CBy.1)

where J; stands for the interior of J;.
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