VALIDITY of the multifractal formalism under the box condition

Fadhila Bahroun*
University of Sousse, ISSAT, Sousse, Tunisia

A R T I C L E I N F O

Article history:

Received 12 November 2014
Accepted 3 May 2015

Abstract

In this paper, we intend to generalise the work of Barral et al. (2003) [1], which provides a bridge between the c-adic boxes and the grid-free approaches to the multifractal analysis of measures. More precisely, we consider some sort of an irregular grid. We apply our results to a Bernoulli measure.

© 2015 Published by Elsevier Ltd.

1. Introduction and preliminaries

The multifractal analysis is a natural framework to describe geometrically the heterogeneity in the distribution at small scales of positive and finite compactly supported Borel measures on a metric spaces X. Specifically, for such a measure μ, one considers the level sets of the pointwise Hölder exponent of μ, this heterogeneity can be classified by considering the iso-Hölder sets
$X_{\mu}(\alpha)=\left\{x \in \operatorname{Supp} \mu / \lim _{r \rightarrow 0} \frac{\log (\mu(B(x, r))}{\log r}=\alpha\right\}$
Then, the singularity spectrum of μ is the mapping
$\alpha \geq 0 \longmapsto \operatorname{dim}\left(X_{\mu}(\alpha)\right)$
where dim stands for the Hausdorff dimension. We say that the multifractal formalism is valid if $\operatorname{dim}\left(X_{\mu}(\alpha)\right)$ is equal to the Legendre transform at α of a scale function associated to μ. In [3], in order to prove the validity of the centred multifractal formalism of Olsen [7], the authors imposed a condition on the exterior generalised Hausdorff measure $\mathcal{H}_{\mu}^{q, B \mu(q)}$, more precisely, they proved that

$$
\text { if } \begin{aligned}
\mathcal{H}_{\mu}^{q, B_{\mu}(q)}(\operatorname{Supp} \mu) & >0 \text { then } \operatorname{dim}\left(X_{\mu}\left(-B_{\mu}^{\prime}(q)\right)\right) \\
& =B_{\mu}^{*}\left(-B_{\mu}^{\prime}(q)\right)
\end{aligned}
$$

where B_{μ}^{*} is the Legendre transform of B_{μ}. Unfortunately, this hypothesis is often difficult to verify because the measure is in

[^0]general constructed generally over boxes. In [1], the authors replaced the hypothesis $\mathcal{H}_{\mu}^{q, B_{\mu}(q)}(\operatorname{Supp} \mu)>0$ by conditions depending only on the measure μ and the c - adic grid. More precisely, they showed that under the neighbouring box condition (NBC) hypothesis and if there exists a Frostman measure associated to μ for the c-adic boxes, the centred multifractal formalism is valid. Notice that the authors have been applied these results to quasi-Bernoulli and Mandelbrot measures ([1]).

In this work, we propose to generalise results of ([1]) to an irregular grid. Then we will apply our main theorem to a Bernoulli measure. Let's give a brief description of the organisation of the paper. For the convenience of the reader we recall the Olsen's multifractal formalism ([7]) in Section 2. Section 3 deals with box formalism. In Section 4 we state our main results and their proofs. In Section 5, we prove the validity of the multifractal formalism for a Bernoulli measure constructed on an irregular grid.

2. A centred multifractal formalism

Definition 2.1. A metric space (X, d) is said to have the Besicovich covering property if there exists a positive integer ξ such that, given any collection $\left\{B\left(x_{j}, r_{j}\right)\right\}_{j}$ of balls, one can extract from it, ξ packings $P_{1}, P_{2}, P_{3}, \ldots, P_{\xi}$ which altogether form a cover of the set $\left\{x_{j}\right\}_{j}$.

Let (X, d) be a metric space having the Besicovich covering and μ a positive atomless Borel measure on X. According to Olsen ([7]), we define several measures and premeasures
indexed by a couple (q, t) of real numbers. If E is a subset of X and δ is a positive real number, we set
$\overline{\mathcal{P}}_{\mu, \delta}^{q, t}(E)=\sup \sum_{j} \mu\left(B\left(x_{j}, r_{j}\right)\right)^{q}\left(2 r_{j}\right)^{t}$
with the convention, $0^{q}=0$ for all $q \in \mathbb{R}$, which is valid throughout this paper.

Notice that this supremum is being taken over the collections $\left\{B\left(x_{j}, r_{j}\right)\right\}_{j}$ of centred δ-packing composed of mutually closed disjoint balls of E whose centers x_{j} belong to E and whose diameter $2 r_{j}$ are less than δ. We consider the limit
$\overline{\mathcal{P}}_{\mu}^{q, t}(E)=\lim _{\delta \rightarrow 0} \overline{\mathcal{P}}_{\mu, \delta}^{q, t}(E)$
The function $\overline{\mathcal{P}}_{\mu}^{q, t}$ is called packing pre-measure. It is increasing and it lacks σ-subadditivity to be a Caratheodory outer measure. That is why one considers the following quantity
$\mathcal{P}_{\mu}^{q, t}(E)=\inf _{E \subset \cup_{j} E_{j}} \sum_{j} \overline{\mathcal{P}}_{\mu}^{q, t}\left(E_{j}\right)$
which, as a function of E, is an outer measure. This is the same process as for defining packing measures, which were introduced in ([9]). In a similar way, one defines the generalised Hausdorff measure with respect to q and t.
$\overline{\mathcal{H}}_{\mu, \delta}^{q, t}(E)=\inf \sum_{j} \mu\left(B\left(x_{j}, r_{j}\right)\right)^{q}\left(2 r_{j}\right)^{t}$.
This infimum is being taken over all δ - centred covering $\left\{B\left(x_{j}, r_{j}\right)\right\}_{j}$ of E by balls such that $E \subset \cup_{j} B\left(x_{i}, r_{j}\right)$, whose centers x_{j} belong to E and whose diameter $2 r_{j}$ are less than δ and consider the limit
$\overline{\mathcal{H}}_{\mu}^{q, t}(E)=\lim _{\delta \rightarrow 0} \overline{\mathcal{H}}_{\mu, \delta}^{q, t}(E)$
The function $\overline{\mathcal{H}}_{\mu}^{q, t}$ is σ-subadditive but not increasing. In order to deal with an outer measure, one defines
$\mathcal{H}_{\mu}^{q, t}(E)=\sup _{F \subset E} \overline{\mathcal{H}}_{\mu}^{q, t}(F)$
These last measures are the multifractal counterparts of the centred Hausdorff measures introduced in [8]. For a fixed q, if, for some t, one has $\overline{\mathcal{P}}_{\mu}^{q, t}(\operatorname{Supp} \mu)<+\infty$, then, for all $t^{\prime}>t$, one has $\overline{\mathcal{P}}_{\mu}^{q, t^{\prime}}(\operatorname{Supp} \mu)=0$. Where Supp μ stands for the topological support of μ. Therefore, there exists a unique $\Lambda_{\mu}(q) \in \overline{\mathbb{R}}$ such that
$\Lambda_{\mu}(q)=\sup \left\{t \in \mathbb{R} / \overline{\mathcal{P}}_{\mu}^{q, t}(\operatorname{Supp} \mu)=+\infty\right\}$
In a similar way, there exist two functions B_{μ} and b_{μ} respectively associated with $\mathcal{P}_{\mu}^{q, t}$ and $\mathcal{H}_{\mu}^{q, t}$ such that
$B_{\mu}(q)=\sup \left\{t \in \mathbb{R} / \mathcal{P}_{\mu}^{q, t}(\operatorname{Supp} \mu)=+\infty\right\}$
and
$b_{\mu}(q)=\sup \left\{t \in \mathbb{R} / \mathcal{H}_{\mu}^{q, t}(\operatorname{Supp} \mu)=+\infty\right\}$
Record that all these three functions are non increasing and Λ_{μ} and B_{μ} are convex. It is clear that $B_{\mu} \leq \Lambda_{\mu}$.

Remark that if moreover the metric space (X, d) has the Besicovich covering property defined previously, one has $b_{\mu} \leq B_{\mu}$, and we conclude that
$b_{\mu} \leq B_{\mu} \leq \Lambda_{\mu}$

If α and β are two real numbers such that $\alpha \leq \beta$, one considers the following sets

$$
\begin{aligned}
X_{\mu}(\alpha, \beta)= & \left\{x \in \operatorname{Supp} \mu / \alpha \leq \liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r}\right. \\
& \left.\leq \limsup _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \leq \beta\right\}
\end{aligned}
$$

Instead of $X_{\mu}(\alpha, \alpha)$, we shall simply write $X_{\mu}(\alpha)$.
If the derivative of B_{μ} exists at point q, it is known [4,7] that the following inequalities hold, if $X_{\mu}\left(-B_{\mu}^{\prime}(q)\right) \neq \emptyset$
$\operatorname{dim} X_{\mu}\left(-B_{\mu}^{\prime}(q)\right) \leq b_{\mu}^{*}\left(-B_{\mu}^{\prime}(q)\right)$
$\operatorname{DimX}_{\mu}\left(-B_{\mu}^{\prime}(q)\right) \leq B_{\mu}^{*}\left(-B_{\mu}^{\prime}(q)\right.$
where dim and Dim stand for the Hausdorff and packing dimensions ([8], [9]), and the star as an exponent denotes the Legendre transform, i.e.
$f^{*}(\alpha)=\inf _{q \in \mathbb{R}}(\alpha q+f(q)), \quad x \in \mathbb{R}$
Definition 2.2. If $B_{\mu}^{\prime}(q)$ exists and if all the quantities in (2.2) are equal, one says that the measure μ obeys the multifractal formalism at point q.

In [3], Ben Nasr et al., have established the following result.

Theorem (3). Suppose that (X, d) has the Besicovich covering property, then if $\alpha=-B_{\mu}^{\prime}(q)$ exists and $\mathcal{H}_{\mu}^{q^{, B \mu}(q)}(\operatorname{Supp} \mu)>0$, one has
$\operatorname{dim} X_{\mu}(\alpha)=\operatorname{Dim} X_{\mu}(\alpha)=B_{\mu}^{*}(\alpha)$ and $\quad b_{\mu}(q)=B_{\mu}(q)$

3. Box analysis

Let $\mathcal{F}=\cup_{n \geq 1} \mathcal{F}_{n}$ such that $\left\{\mathcal{F}_{n}\right\}_{n \geq 1}$ stands for a sequence of nested finite partition of [$0,1[$, by semi-open intervals. If x belongs to $\left[0,1\left[, I_{n}(x)\right.\right.$ stands for the interval in \mathcal{F}_{n} which contains x. If I is the Borel set in $[0,1[,|I|$ denotes its Lebesgue measure.

We suppose that:
$\left.H_{1}\right) \mathcal{F}_{n+1}$ is a refinement of \mathcal{F}_{n} and for all $x \in[0,1[;$ $\lim _{n \rightarrow+\infty}\left|I_{n}(x)\right|=0$.
H_{2}) There exist $s \in \mathbb{N} \backslash\{0\}$ and $L>0$ such that for every $x \in$] 0,1 [and for all $0<r \leq 1$, there exist k contiguous intervals of $\mathcal{F}, J_{1}, J_{2}, \ldots, J_{k}(k \leq s)$, of the same generation, satisfying

1. $\forall 1 \leq i \leq k, \quad \frac{1}{L} r \leq\left|J_{i}\right| \leq L r$.
2. $B(x, 2 r) \cap\left[0,1\left[\subset J_{1} \cup J_{2} \cdots \cup J_{k}\right.\right.$.
3. $\forall y \in B(x, r) \cap] 0,1[$,

$$
\left\{\begin{array}{l}
\exists 1 \leq i \leq k ; J_{i} \subset B(y, r) \text { with } y \in \dot{J}_{i} \\
\text { or } \\
\exists 1 \leq i_{1}, i_{2} \leq k ; J_{i_{1}} \text { and } J_{i_{2}} \text { contiguous and } \\
y \in J_{i_{1}} \cup J_{i_{2}} \subset B(y, r)
\end{array}\right.
$$

where \dot{J}_{i} stands for the interior of J_{i}.

https://daneshyari.com/en/article/8254835

Download Persian Version:

https://daneshyari.com/article/8254835

Daneshyari.com

[^0]: * Corresponding author: Tel.: +21698618247.

 E-mail address: fadhilabahroun@gmail.com

